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This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion

particles. This formalism is based on an operator algebra made of commutators and anticommutators

which contrasts with the usual scalar formalism of Green functions developed half a century ago for

elementary quantum particles. We also provide the diagrams which visualize the very specific many-body

physics induced by fermion exchanges between composite quantum particles.
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Although most physical effects deal with composite
quantum particles, textbook many-body procedures [1,2]
consider elementary fermions or bosons only. This comes
from the lack of exact procedures able to handle the Pauli
exclusion principle between the particle fermionic compo-
nents. This Letter proposes a formalism capable of exactly
treating this exclusion and provides diagrams to visualize
the very specific many-body physics induced by fermion
exchanges between composite quantum objects.

Various procedures [3–5] have been proposed to deal
with composite particle many-body effects. These end by
mapping the fermion space onto a subspace of effective
particles taken as elementary fermions or bosons, depend-
ing on the fermionic component number. These particles
interact through effective scatterings built from the ones of
their elementary fermions dressed by a ‘‘certain amount’’
of fermion exchanges [6,7].

Such mappings are neither fully satisfactory nor, some-
times, consistent—the one commonly used for excitons [6]
produces an effective Hamiltonian which is not Hermitian.
Rather than working out a better mapping, we preferred to
face the particle composite nature, fermion exchanges
appearing explicitly in the theory. This was a challenge
because, for five decades, no significant step has been
taken in producing a many-body formalism appropriate
to composite quantum particles. It implies to generate
fermion exchanges between a large number of composite
particles in a systematic way. It also implies to refresh the
concept of particle interaction because we here deal with
objects which are basically undefined since they keep
exchanging their fermions. Since all known many-body
procedures rely on interactions between well-defined ob-
jects, a conceptually new formalism is required.

A few years ago [8,9], we tackled the simplest of these
composite objects by considering two fermions, having
excitons in mind. These are bosonlike and indeed, were
commonly treated as such up to now. Since boson opera-
tors commute, a natural approach appeared to us to calcu-
late commutators of exciton creation operators and to see
what could be extracted from them. It turned out that with
two commutators, we can pick the 2� 2 scatterings which

describe interactions between the fermions of two excitons
in the absence of fermion exchanges. Through two other
commutators, we reach the 2� 2 scatterings for fermion
exchanges in the absence of fermion interaction.
Exchanges between N excitons then follow from combin-
ing these 2� 2 exchanges. We visualized these fermion
exchanges through new diagrams [9,10] named for the
Hindu god Shiva, due to their multiarm structure. Like
Feynman diagrams [1,2], Shiva diagrams allow us to cal-
culate the physical effect at hand through rather intuitive
rules. They also provide a visual understanding for the
many-body physics induced by Pauli blocking on compos-
ite bosons: whereas it is known that Pauli blocking pro-
duces the free electron Fermi sea, very little is understood
on Pauli blocking with bound electron pairs, as exemplified
by our latest work on Cooper pairs [11].
This composite exciton many-body theory allowed us to

solve problems open for decades, such as the exact can-
cellation of volume-linear terms for nonlinear susceptibil-
ities [12] or the analytical resolution of semiconductor
Bloch equations in nonlinear optics [13]. Its major success,
however, lies in providing a direct way to understand and
better predict physical effects, such as the exciton Bose-
Einstein condensation occurring in dark states [14,15]. We
can also cite effects induced by unabsorbed photons
through exchanges with virtual excitons: spin precession
[16] and teleportation [17], Faraday rotation [18] and
‘‘oscillation’’ [19], Hadamard and phase gates for quantum
computing [20].
These previous works on composite-boson excitons just

constitute a ‘‘hors d’oeuvre’’ for a far more formidable
task: the construction of a general many-body formalism
for any quantum object. The challenge is to generate in a
fully systematic way exchanges between particles made of
an arbitrary number of fermions. If this number is odd,
particles are fermionlike; their creation operators anticom-
mute. Why then to consider commutators only, as we did
for excitons?
The goal of this Letter is to present the general structure

of a many-body formalism allowing an exact treatment of
n-fermion particles. We show that scatterings which result
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from fermion interactions without fermion exchanges, are
still generated by two commutation relations, Eqs. (7) and
(8). These are two commutators for cobosons—a contrac-
tion for composite bosons—while the second commutator
transforms into an anticommutator for cofermions—a con-
traction for composite fermions. Fermion exchanges with-
out fermion interactions are far more demanding: n
commutation relations are necessary to fully control fer-
mion exchanges between n-fermion particles. For cobo-
sons, these are just commutators while, for cofermions,
they also contain anticommutators: to fully control fermion
exchanges between 3-fermion particles, two anticommuta-
tors plus one commutator are required, see Eqs. (10), (12),
and (14). We also show that other diagrams, called ‘‘Kali,’’
are necessary in addition to Shiva-like diagrams, to visual-
ize all possible fermion exchanges between n-fermion
particles.

Formalism.—To better grasp how the general structure
of this many-body formalism transforms from bosonlike to
fermionlike particles, let us concentrate on the simplest of
these composite objects, namely, cobosons made of two
fermions (�,�) and cofermions made of three fermions (�,
�, �). The reason for choosing commutator or anticom-
mutator, crucial for building up a consistent theory, is easy
to extend to n > 3. These fermions, which can be up or
down spin electrons, valence band holes, protons, neutrons,
or even quarks, are assumed to be different. Identical
fermions, � � �, like in semiconductor triplet trions,
will be considered elsewhere. Different fermion creation

operators obey ½ayk�
; byk�

��ab
¼ 0 ¼ ½ak�

; byk�
��ab

, with

½A; B�� ¼ ABþ �BA. For fermions belonging to the

same species, �ab ¼ 1, while for different species, �ab ¼
�1. However, since �ab ultimately appears as �2

ab, we can,

for simplicity, consider that all elementary fermion opera-
tors anticommute.

We take the n-fermion particles as being Hamiltonian
eigenstates in order to form a complete orthogonal basis for

n-fermion states: hijji ¼ �ij with jii ¼ Cy
i jvi where Cy

i is

the i particle creation operator. For 2-fermion particles, Cy
i ,

written as By
i , is related to free fermion pairs:

By
i ¼ X

k�;k�

ayk�
byk�

hk�;k�jii; (1)

ayk�
byk�

¼ X
i

By
i hijk�;k�i; (2)

while for 3-fermion particles with creation operator Fy
i ,

Fy
i ¼ X

k�;k�;k�

ayk�
byk�

cyk�
hk�;k�;k�jii; (3)

ayk�
byk�

cyk�
¼ X

i

Fy
i hijk�;k�;k�i: (4)

and so on. . .. These creation operators are such that

½Cy
m; C

y
i �� ¼ 0; (5)

with � ¼ �1 for cobosons like By
i while � ¼ þ1 for

cofermions like Fy
i . Composite particles can change states,

i.e., interact in the most general sense, through either
fermion interactions or just fermion exchanges. Let us
now derive the set of commutation relations which controls
these two types of processes.
(i) Fermion interactions.—The choice between commu-

tator and anticommutator follows from ðH � EiÞCy
i jvi ¼

0 which, for arbitrary jc i, gives
HCy

i jc i ¼ EiC
y
i jc i þ Cy

i Hjc i þ j . . .i: (6)

j . . .i comes from interactions between particle i and jc i.
Equation (6) thus always leads to a commutator:

½H;Cy
i ��1 ¼ EiC

y
i þ Vy

i : (7)

The ‘‘creation potential’’ Vy
i describes all interactions with

the fermions of particle i. Because of homogeneity, Vy
i

reads as
P

mC
y
mV

ð1Þ
mi where, for two-fermion interaction,

Vð1Þ
mi contains products like a

ya.
To get rid of Vð1Þ

mi and end with scalar scatterings only, we
need a second commutation relation. Commutator or anti-
commutator follows from (i, j) symmetry [see Eq. (A1)].
Homogeneity then gives

½Vy
i ; C

y
j �� ¼ X

m;n

Cy
mC

y
n�

n j
m i

� �
: (8)

The �ðnm j
iÞ scattering is represented by the diagram of

Fig. 1. It comes from interactions between the elementary
fermions of the composite particles (i, j), in the absence of
fermion exchange, m and i being made with the same
fermions. This ‘‘direct’’ scattering follows from two com-
mutators in the case of cobosons but a commutator and an
anticommutator in the case of cofermions.
(ii) Fermion exchanges.—Generating fermion ex-

changes between composite quantum particles is far
more demanding. It is the difficult part of the problem.
No progress has been made from the Green function for-
malism for elementary fermion or boson many-body ef-
fects. The exact handling of fermion exchanges between
n-fermion particles is the original part of the present Letter.

Cy
i jvi being H eigenstate, ½Cm;C

y
i ��jvi gives �m;ijvi

whatever �. It, however, is natural to take the same com-

FIG. 1. (a) Interaction scattering �ðnm j
iÞ for cobosons made of

2 fermions, resulting from interactions between their fermionic
components. (b) Same for 3-fermion cofermions.
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mutation relation for [Cy
m, C

y
i ] and [Cm, C

y
i ]. This leads to

[8–10]

½Cm;C
y
i �� ¼ �m;i �Dmi: (9)

Dmi is a (n� 1)-body operator: for fermion pairs, it reads
in terms of products like aya, while Dmi also contains
products like aybyba for fermion triplets, and so on.

To eliminate this operator, we need (n� 1) commuta-
tion relations. The choice between commutator and anti-
commutator again follows from particle symmetry [see
Eq. (A2)]. Homogeneity then always leads to

½Dmi; C
y
j ��1 ¼

X
n

Cy
nDnmij: (10)

Dnmij reduces to a scalar Dð0Þ
nmij for fermion pairs. For 3-

fermion particles, it also contains a one-body operator

Dð1Þ
nmij in (aya, byb, cyc), i.e., Dnmij ¼ Dð0Þ

nmij þDð1Þ
nmij,

and so on.

Since Dnmijjvi reduces to Dð0Þ
nmijjvi, Eq. (10) acting on

vacuum gives this scalar part as

Dð0Þ
nmij ¼ ð�m;i�n;j � ��m;j�n;iÞ � hvjCnCmC

y
i C

y
j jvi;

(11)

The two terms in the right-hand side would be equal if the

particles were elementary:Dð0Þ
nmij physically corresponds to

all possible fermion exchanges between two n-fermion
particles from initial states (i, j) to final states (m, n).

For fermion pairs, Eq. (10) then gives

½Dmi; B
y
j ��1 ¼

X
n

By
n

X
�¼ð�;�Þ

��
n j
m i

� �
; (12)

where the scalar ��ðnm j
iÞ corresponds to the Shiva diagram

of Fig. 2(a): coboson i exchanges its fermion � ¼ � or �
with coboson j, to end in state m.

The situation gets considerably more complicated when
turning to 3-fermion particles. Cofermion i can exchange
one or two of its three fermions with one cofermion j, but it
can also exchange its three fermions with two cofermions j
and k. Since, as seen from Fig. 2(b), ��ðnm j

iÞ ¼ ���ðnm j
iÞ,

Eq. (10) then gives

½Dmi; F
y
j ��1 ¼

X
n

Fy
n

X
�

�
��

n j
m i

� �
� ði $ jÞ

�
þDy

mij;

(13)

where we have set Dy
mij ¼

P
nF

y
nD

ð1Þ
nmij, the sign change in

(i $ j) coming from double exchange.

To get rid of the operator Dy
mij and end with scalar

scatterings only, we need a third commutation relation.
The choice is again made from symmetry [see Eq. (A3)].
After some algebra, we end with

½Dy
mij; F

y
k �þ1 ¼

X
p;n

Fy
pF

y
n

�
	

p k
n j
m i

0
@

1
Aþ perm

�
; (14)

where the permutations include (i, j, k) circular permuta-
tions as well as noncircular permutations with a minus
sign. The scalar 	, represented by the Kali diagram of
Fig. 3, describes fermion exchanges between three parti-
cles—instead of two as in Shiva diagrams. Its mathemati-
cal expression follows from trivial rules to calculate
diagrams [9,10]: we take the ‘‘in’’ state wave functions,
the complex conjugate of the ‘‘out’’ state wave functions,
with the fermion coordinates read from the diagrams, and
we sum over these coordinates:

	

p k

n j

m i

0
BB@

1
CCA¼

Z
fdrg
�

mðr�1
;r�2

;r�3
Þ
�

nðr�2
;r�3

;r�1
Þ

�
�
pðr�3

;r�1
;r�2

Þ
kðr�3
;r�3

;r�3
Þ

�
jðr�2
;r�2

;r�2
Þ
iðr�1

;r�1
;r�1

Þ: (15)

(iv) How to use this formalism.—We first rewrite the
quantity at hand in terms of composite particle operators
using equations similar to Eqs. (2) and (4). Next, we
eliminate the Hamiltonian H by pushing it to the right

through commutator constructed upon Eq. (7). The Vy
i ’s

are eliminated through Eq. (8). This generates interaction
scatterings �ðnm j

iÞ and leaves composite particle scalar

products. These are calculated by pushing the Ci’s to the
right according to Eq. (9), the Dmi’s being eliminated
through equations like Eqs. (12) or (13) and (14).
Previous works using this formalism for excitons [9] can

i

jn

m

n

m

j

i m

n i

j

=

(a) (b)

FIG. 2. (a) Shiva diagram for fermion exchanges between two
cobosons made of fermions � and � (solid and dashed lines).
(b) Shiva-like diagrams for fermion exchanges between two
cofermions made of three fermions (�, �, �).

p

n

m

k

j

i

FIG. 3. Kali diagram for fermion exchanges between three
cofermions. The (�, �, �) lines are shown separately, to make
the diagram topology clearer.
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be used as exercises. This Letter demonstrates that calcu-
lations for n-fermion particles are conceptually similar.

We have just used [21] the cofermion version of this
formalism to calculate the time evolution of two semicon-
ductor trions, made of opposite spin electrons and a hole.
To get the effective scattering ruling their time evolution,

we start with e�iHtFy
i F

y
j jvi, replace e�iHt by its integral

representation [9] in terms of ðz�HÞ�1, and pushH to the

right using ðz�HÞ�1Fy
i ¼ ½Fy

i þ ðz�HÞ�1Vy
i ��½z�H � Ei��1 which follows from Eq. (7). The second

bracket acting on Fy
j jvi gives ðz� Ej � EiÞ�1. We are

then left with Vy
i F

y
j jvi which reads in terms of �ðnm j

iÞ,
using Eq. (8). The diagram of Fig. 1(b) gives it as

�
n j
m i

� �
¼ �QmþQn;QiþQj

VQm�Qi
j�Qm�Qi

j2: (16)

Qi is the trion i center-of-mass momentum, Vq the free

carrier Coulomb interaction. �q results from the trion

composite nature. For transition within the relative motion
ground state hk;pj�0i [22], it reads

�q ¼ X
k;p

½2h�0jkþ �hq;pi

� h�0jk� �eq;pi�hk;pþ �eqj�0i; (17)

with �e ¼ 1� �h ¼ me=ðme þmhÞ and �e ¼
me=ð2me þmhÞ. The trion composite nature shows up
for large q only on the trion scale [22], �q reducing to 1

for q ¼ 0, as physically reasonable since trions for small q
appear as elementary negative charges.

The effective scattering also contains exchange contri-

butions. Obtained through hvjFmFne
�iHtFy

i F
y
j jvi, they

formally read as
P

k;l��ðnm l
kÞ�ðlk j

iÞ. They contain 27 physi-
cal processes, which reduce to 9 different quantities, due to
internal symmetries. For more details, see Ref. [21].

Conclusion.—We here provide a general many-body
formalism to deal with fermion exchanges between
n-fermion particles in an exact way. This formalism is
impressively compact in view of the initial complexity of
the problem: it reduces to (nþ 2) equations. These read in
terms of commutators and anticommutators between the
creation operators of these composite quantum objects.
Fermion exchanges are efficiently visualized through mul-
tiarm diagrams called Shiva and Kali.

We wish to thank Marc-André Dupertuis for valuable
discussions at the beginning of this work. We also thank
Nicole Bontemps and François Dubin for their help in the
preparation of the manuscript.

Appendix: Symmetry requirements.—For readers willing
to better grasp the deep reasons for choosing between
commutators and anticommutators, we here list three use-
ful identities: (i, j) symmetry in

½½H;Cy
i ��1; C

y
j ��1

¼ ��½½H;Cy
j ����1

; Cy
i ��; (A1)

imposes �1 ¼ �, while it imposes �2 ¼ �1 in

½½Cm;C
y
i ��; Cy

j ��2
¼ ��½½Cm;C

y
j ����2

; Cy
i ��1: (A2)

(j, k) symmetry in

½½½Fm;F
y
i �þ1;F

y
j ��1;F

y
k ��3

¼�½½½Fm;F
y
i �þ1;F

y
k ���3

;Fy
j �þ1;

(A3)

imposes �3 ¼ þ1, i.e., an anticommutator in Eq. (14).
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