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We establish a novel mechanism of stripe formation in doped systems with alternating t2g orbital

order—the stripe takes the form of a ferro-orbitally ordered domain wall separating domains with

staggered order and allowing for deconfined motion of holes along the stripe. At a finite level of hole

concentration this gives rise to the stability of this solitonic type of stripes, while we show that the phase

change of the staggered order by � plays a minor role in orbitally ordered systems. These results shed new

light on the physics of doped materials in which orbital degeneracy is present.
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In the context of superconductivity in cuprates, both
experimental and theoretical aspects of stripes have been
the subjects of intensive research [1]. At least in the low
doping range, these systems can be viewed as an antiferro-
magnetic (AFM) phase into which holes have been in-
jected. When a hole hops in an AFM background, it
interchanges position with a single spin in each step and
creates a ‘‘string’’ of flipped spins along its path [2], which
accumulates energy cost and thus confines the hole in the
system with classical (Ising-type) interaction. At finite
doping spin and charge density modulations (stripes) de-
velop, which is a way to find compromise between two
opposite tendencies: (i) to delocalize holes and gain hop-
ping energy / t and (ii) let AFM correlations develop,
which optimize the superexchange energy /J. It seems
that, due to the presence of quantum spin fluctuations,
stripes in cuprates show bond order, i.e., take the form of
ladders with dominating singlet correlations on the rungs
[3]. In addition, stripe formation has been demonstrated to
exist in a model with classical AFM exchange inter-
action [4], the so-called t-Jz model, outlined in Figs. 1(a)
and 1(b). While the t-Jz model is hard to realize in spin
systems, we show in this Letter that a related mechanism of
stripe generation would work in t2g orbital systems.

Some previous theoretical analyses of stripe formation
in orbitally degenerate systems led to the conclusion that
lattice distortions are essential for this kind of ordering in
systems with eg orbital degrees of freedom [5]. Stripes in

pnictides with active t2g orbitals were suggested only very

recently [6]. We will demonstrate that in systems with t2g
degeneracy and for large on-site Coulomb interaction U
merely the interplay between hopping and the orbital
superexchange interaction gives rise to the formation of
ferro-orbitally (FO) ordered stripes as domain walls (DWs)
between regions with the alternating orbital (AO) order.
With the goal of analyzing this phenomenon in detail, we
concentrate on the recently introduced strong-coupling
version of the multiorbital Hubbard model for spinless

fermions [7] on the square lattice (when the spins form a
ferromagnetic order). This model is applicable either to
transition metal oxides with active t2g orbitals (when the

tetragonal crystal field splits off the xy orbital from the
fyz; zxg doublet filled by one electron at each site, as for
instance in Sr2VO4 [8]) or to cold-atom systems [9] with
active p orbitals [10].
The strong-correlation limit of the model reads:
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FIG. 1 (color online). The mechanism of stripe formation in
the spin Ising model: a hole doped at the DW kink (a) moves
together with the kink (b). In contrast, a hole doped at the DW
kink in the orbital t2g system (c) is confined to two sites. Two

domains with AFM (AO) order are shown by arrows (boxes);
broken bonds are marked by �.
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Here a and b refer to two t2g orbital flavors [7], yz � a and

zx � b, and the summations are carried over i 2 ab sites
in the ab plane. The orbital superexchange J ¼ 4t2=U and
the effective next nearest neighbor hopping � ¼ t2=U ap-
ply when U � t [11]. The pseudospin operator is Tz

i ¼
1
2 ðnia � nibÞ, while the projection operator P removes

from the Hilbert space states in which any site is doubly
occupied; for more details see Ref. [7].

Single hole motion is in principle confined in the spin
t-Jz model due to the potential well effect caused by the
formation of strings. An effective way to avoid the string
effect is to form an antiphase DW between two AFM
domains, consisting of two semilines separated by a trans-
versal kink, and to create a hole at one of two sites nearest
to the kink in that DW; see Figs. 1(a) and 1(b). The hole
may be shifted along the wall without increasing the num-
ber of broken bonds. As the energy gain of �t is typically
larger than the energy loss Jz=2 due to a broken bond, at a
certain level of hole doping the energy decrease induced by
free hopping of holes along the stripe will compensate the
increase of the magnetic energy caused by the creation of
the DW [4].

Despite the similarity between the spin t-Jz model [4]
and the t2g orbital model given by Eqs. (1)–(5), the mecha-

nism of stripe formation based on solitonlike motion of the
kink-hole complex is not applicable to orbitally degenerate
systems. This can be understood by analyzing the DW

shown in Fig. 1(c). Boxes aligned along the â (b̂) direction
represent b (a) orbital flavors in two domains with opposite
phases of the AO order. Again, similarly to the Ising AFM
state, we have created an antiphase DWwith a kink, and we
have removed an electron from one of two sites nearest to
the kink center. The downward shift of the hole by one
lattice spacing is blocked by the b orbital below it. This
follows directly from the form of the hopping (2), which is
one dimensional (1D) in ordered ab planes [7]. The up-
ward shift of the hole by one lattice spacing is allowed, but
after that move the hole will be blocked again from above.
Therefore, the hole and kink motion are confined in the
orbitally degenerate system with the straight antiphase DW
and a single kink in it [Fig. 1(c)]. Nevertheless, since the
term (2) brings the biggest energy scale (t � J), we may
expect that it will modify the form of the ground state
above a certain filling level. The mechanism of hole de-
confinement, however, is different, as we show below by a
detailed stability analysis.

The DW depicted in Fig. 1 is the most favorable one in
terms of the minimal number of broken bonds per one DW
site. For an orbitally degenerate system, however, the hole
motion by hopping t is allowed along the chain only when
orbitals reorient, similarly to the 1D eg systems [12]. Such

a FO ordered vertical chain of a orbitals in Fig. 2(a)
provides a DW between AO domains, and makes it pos-
sible to deconfine the hole motion along it. The price one
has to pay is two (not one) broken bonds per site. After
replacing one electron (orbital) in the chain by a hole
[Fig. 2(b)], the hole can move due to H t (2) by one step
[Fig. 2(c)], and two broken bonds are removed and two
other ones are created—hence the total number of broken
bonds remains unchanged. In this way the hole motion
occurs in both directions, leaving behind the undisturbed
zigzag pattern of broken bonds.
The hole may also penetrate into the orbitally ordered

domains, as for instance when the term (2) interchanges the
hole with b orbital in Fig. 2(b), leading to the state depicted
in Fig. 2(d). Now the hole can hop further to a nearest
neighbor site either downwards or upwards, but when it
enters ‘‘deeper’’ into the AO domain, the number of broken
bonds increases (now by one) and the string effect [2]
occurs [Fig. 2(e)]. This mechanism efficiently confines
the hole motion to the stripe DW. The expected energy
gain due to hole motion over a homogenous AO state is
realized by the parallel alignment of a orbitals in the chain,
while the phase change by � between two AO domains is
irrelevant to achieve that gain. A similar FO ordered chain
deconfining the hole motion and having the same energy
cost can also be created by reversing every second orbital
along a vertical polaronic line within a single domain of the
AO order, see Fig. 2(f)—it generates a polaronic wall (PW)
by a mechanism similar to that which operates in the 1D eg
orbital model [12]. The main difference between stripes
depicted in Figs. 2(b) and 2(f) is that the hole in the DW
stripe may penetrate one domain from each stripe site,
while in the PW stripe it can enter both domains from
every second site [the hole in Fig. 2(f) can move horizon-
tally only from site j (not from l) either to site i or to site k].

(f)

ji k

l

(d) (e)

(b) (c)(a)

FIG. 2 (color online). Processes governing hole propagation in
the stripe formed as a DW between two domains of the AO
order (a): a doped hole may hop either along the DW (b),(c) or
sidewards (d),(e); (f) shows the PWof a orbitals formed within a
single AO domain; broken bonds are marked by �.
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The explicit analysis presented below will demonstrate that
it is energetically somewhat more favorable to create the
antiphase DW stripe.

In order to discuss stripe stability we must first analyze
single hole propagation in the homogenous AO phase by
means of the same method which will be used later for
stripes. We begin with a hole replacing a orbital, as shown
in Fig. 3(a)—the hopping term / t can shift a hole only
horizontally to its neighboring sites which are occupied by
b orbitals [Fig. 3(b)]. The hole motion can be continued,
and after the second and the third hop the number of broken
bonds increases; see Figs. 3(c) and 3(d). In general, the
energy rise / J, growing with the number of broken bonds,
confines the hole motion (here initiated by the hop in the
direction â) [7]. The number of defected bonds can be
easily evaluated explicitly for paths up to length of seven
steps, as we have done in our analysis. For longer paths
reasonable approximations can be developed. They fol-
low from the relation between the number of broken bonds
and the number of bends in the path, see Fig. 3(d), and on
the number of zigzags, such as that arising if the hole in
Fig. 3(c) has moved left.

The action of the term (5) does not give rise to hole
deconfinement, as it moves a hole generating several bro-
ken bonds, cf. Figs. 3(a) and 3(c). In contrast, weak hole
deconfinement (� � t) occurs due to the term (4) which
shifts a hole by two lattice spacings. This takes place with-
out bringing about any additional defects in the AO order
and is allowed provided that the opposite orbital (here b)
occupies the intermediate site [Figs. 3(a) and 3(e)].

We are now going to cast the insights which have been
outlined above into the framework of the recursion method
[13] applied to the Green’s function, and to determine the
self-energy. The starting point is the bare Green’s function
G0ðkb;!Þ related with hole deconfined movement in the

jAOi state mediated by the free propagation term (4) along

the b̂ axis, with momentum kb [Fig. 3(e)]—it is
G�1

0 ðkb; !Þ � !� 2� cosð2kbÞ � J. A reference energy

of the jAOi state has been subtracted in G�1
0 ðkb; !Þ, and

the energy J above arises from the four bonds removed
from the jAOi state by adding a hole. The energy disper-
sion /� in G0ðkb; !Þ is given by the matrix element of the
full Hamiltonian evaluated for the propagating state j1i¼ffiffiffi

2
L

q P
nexpði2nkbÞa2nb̂jAOi, where L is the system length

along b̂, and the hole is at the origin in Fig. 3(a).
The full Green’s function contains the self-energy,

G�1ðkb; !Þ ¼ G�1
0 ðkb;!Þ � �ð!Þ, which stems from the

confined motion initiated by the first step in the a direction
transverse to the coherent propagation along b. The con-
fined motion [Figs. 3(a)–3(d)] is accompanied by string
formation and path retracement by holes. We evaluated
�ð!Þ analytically by applying the recursion procedure, i.e.,
by the consecutive action with the Hamiltonian (1) on the
state j1i, which represents the hole created in the perfect
AO order [Fig. 3(a)]. The only approximations consist of
neglecting (i) some details in long hole paths, (ii) some
processes mediated by the term (4) (such as those repre-
sented by Figs. 3(c) and 3(f); they bring about only a minor
incoherent contribution [7]), and (iii) hole-hole interac-
tions within AO domains. On the other hand, we always
implement the constraint that the hole path cannot encircle
a plaquette—its topological reason can be recognized by
analyzing Fig. 3.
�ð!Þ takes the form of a continued fraction. For ex-

ample, if we neglect, for demonstration purposes only, the
term (5) (it is taken into account in the actual calculation
but gives only minor corrections as � � t), one finds

�ð!Þ ¼ 2t2

!� 7
4 J � 2t2

!�9J=4����
; (6)

where prefactors 2 at t2 refer to the number of ways by
which a path can be further extended after the 1st and 2nd
hop to a neighboring site. Such terms represent off-
diagonal matrix elements of the Hamiltonian between
consecutive states created during the recurrence procedure
[13]. The prefactors 7 and 9 at J=4 stand for the number of
bonds for which the superexchange (3) gives 0 for paths of
length 1 and 2, respectively (instead of �J=4 as for all
bonds in the jAOi state)—they enter as diagonal matrix
elements of the Hamiltonian. By searching for zeros of
G�1ðkb; !Þ the quasiparticle dispersion �0ðkbÞ can be de-
rived. For the numerical results shown in Fig. 4(a), suffi-
ciently long paths (up to 12 steps) have been considered in
order to obtain the saturation of results.
The same method of analysis apart from a minor modi-

fication may also be applied to the DW stripe itself. Since
two states shown in Figs. 2(b) and 2(c) are not related to
each other by a translation, both of them, j10i ¼ffiffiffi

2
L

q P
n expði2nkbÞa2nb̂jDWi and j100i ¼

ffiffiffi
2
L

q P
n expfið2nþ

1Þkbgað2nþ1Þb̂jDWi, need to be chosen as a starting point in

(e) (f)(d)

(b) (c)(a)

FIG. 3 (color online). Artist’s view of hole propagation in the
homogenous jAOi state (a)—a hole may move due to t (2) and
create broken bonds, marked by �, after one (b), two c), or
three (d) hops, while � (4) does not disturb the AO order (a) and
(e), but may also leave behind broken bonds (c) and (f).
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the recursion method. Here jDWi stands for the empty
stripe depicted in Fig. 2(a), and the position of the hole
in Fig. 2(b) is given by the zero vector. Thus the recursion
method has to be generalized to the case of several initial
states. We have found this generalization, but since the
procedure has turned out to be equivalent to the so-called
projection-operator technique [14], we do not discuss it
here in detail. The Green’s function and the self-energy
are given now by 2� 2 matrices. The inverse bare
Green’s function has only off-diagonal nonvanishing ma-
trix elements, ½G�1

0 ðkb;!Þ	10100 ¼ ½G�1
0 ðkb; !Þ	10010 ¼ !�

2t cosðkbÞ � J=4, where the reference energy due to the
Ising term (3) has been subtracted again. When applying
the recurrence procedure to the evaluation of �ð!Þ, we
may use our previous observations regarding the matrix
elements of the Hamiltonian between states representing
different paths, in some cases including modifications
brought about by the presence of the DW.

The PW stripe formed as a FO ordered chain within the
AO order, shown in Fig. 2(f), can also be solved by using
the generalized version of the recursion method. By look-
ing for the zeros of the inverted Green’s function, or of the
determinant, if Gðkb; !Þ is given by a matrix, we have
determined and showed in Fig. 4(a) the energy dispersion

�0ðkbÞ in the b̂ direction for the homogeneous system with
AO order, �PWðkbÞ for the PW stripe and �DWðkbÞ for the
antiphase DW stripe. Different dispersions confirm that the
hole motion stems from t (�) hopping in the stripe phases
(homogeneous AO phase).

We investigate the stability of both types of stripe phases
using the energy gain per site (X ¼ DW; PW),

�EXðnlÞ ¼ 1

�

Z nl�

0
dkb�XðkbÞ � E0ðnlÞ þ �EJ; (7)

with respect to the doped homogeneous AO phase with
energy E0ðnlÞ ¼ nl�0ð�=2Þ, given by the band energy
minimum �0ð�=2Þ and proportional to the linear stripe
filling nl in the low doping regime (when the linear filling
does not increase the global filling). Here �EJ ¼ J=2 is the

energy cost of two broken bonds in a stripe phase. The
stripes are stabilized by increasing nl, see Fig. 4(b), but the
PW stripes are somewhat less stable, which we interpret as
following from the destructive interference of hole pene-
tration paths into left or right AO domains.
In conclusion, we have shown that a purely electronic

mechanism leads to self-organization in the form of FO
ordered stripes at antiphase DWs, penetrating into the AO
order—this novel phase becomes more stable than the
doped homogeneous AO state at the linear filling of nl ’
0:26 (nl ’ 0:25) for J ¼ 0:4t (J ¼ 0:2t). The energy gain
over the PW stripes is small for all nl, which suggests that
the latter form of stripes might also be formed at finite
temperature. These features are unique and can be of
relevance to the behavior of doped Mott insulators with
t2g or p orbital order when spins may be neglected.
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