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We give evidence of a clear structural signature of the glass transition, in terms of a static correlation

length with the same dependence on the system size, which is typical of critical phenomena. Our approach

is to introduce an external, static perturbation to extract the structural information from the system’s

response. In particular, we consider the transformation behavior of the local minima of the underlying

potential energy landscape (inherent structures), under a static deformation. The finite-size scaling

analysis of our numerical results indicate that the correlation length diverges at a temperature Tc, below

the temperatures where the system can be equilibrated. Our numerical results are consistent with random

first order theory, which predicts such a divergence with a critical exponent � ¼ 2=3 at the Kauzmann

temperature, where the extrapolated configurational entropy vanishes.
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Is there a static, structural origin of the dramatic slowing
down of dynamics in supercooled liquids? The physical
mechanism of the dramatic slowing down and correspond-
ing increase in viscosity upon approaching the glass tran-
sition has been vehemently debated for more than 40 years
[1,2]. In critical phenomena, the slowing down of the
system’s dynamics is intimately related to a nearby phase
transition, where a diverging length scale typically reflects
the onset of long-range correlation. Several recent theories
of the glass transition are built in this spirit [3–6] and are
supported from results on dielectric susceptibility [7] and
specific heat [8,9]. The few experimental studies, however,
show only a moderate cooperativity length near the glass
transition of some four to five particle diameters [10].
Specifically designed simulations [11] have recently indi-
cated a growing amorphous order in the range of four
particle diameters. The results confirm, to some extent,
the predictions of random first order theory (RFOT)
[3,6]. However, no evidence for critical behavior with a
diverging length scale could be found there. A growing
correlation length is also indicated by a very recent nu-
merical study of different local quantities [12] and it is
interpreted as the hint of a critical behavior, whose evi-
dence, nevertheless, is still very elusive. The heteroge-
neous dynamics of glass forming liquids allow one to
define a dynamical correlation length [1,13–16], which is
indeed growing as the glass transition is approached, but it
remains unclear how, or whether at all, this dynamical
length has a static, structural origin as is the case in phase
transitions. A promising, alternative approach to super-
cooled liquids is based on inherent structures, i.e., the local
minima of the underlying potential energy landscape [17].
Although several qualitative changes in the system dynam-
ics can be related to changes in their inherent structures
[18,19], no length scale as significantly increasing as the
dynamical correlation length has emerged so far [20].

Following a nonequilibrium thermodynamic theory of
glasses [21], here we use small, static deformations to
perturb the inherent structure configurations of super-
cooled liquids approaching the glass transition [22]. With
this procedure, large correlated regions emerge at low
temperatures and allow us to detect a static correlation
length that shows critical behavior upon approaching the
glass transition.
Methods and numerical simulation.—We employ a bi-

nary Lennard-Jones mixture, which is an established model
for fragile glass formers [23] (see [24]). An ensemble of
well equilibrated configurations are prepared at constant
density by slowly cooling statistically independent samples
from high temperatures down to the supercooled regime.
We study different system sizes ranging fromN ¼ 2000 up
to N ¼ 64 000 particles. The inherent structure Xq ¼ frqj g
corresponding to the actual configuration X ¼ frjg is ob-
tained by locally minimizing the system’s potential energy
by a conjugate gradient method. The potential energy
landscape and its local minima (the inherent structures)
have been studied intensively in recent years, unraveling a
number of remarkable relations between inherent structure
properties and the system’s behavior [25–29]. Unlike these
previous studies, we investigate the relation between two
inherent structure configurations, Xq and Xdq, where the
latter is the inherent structure corresponding to the affinely
deformed configuration Xd ¼ frdj g, rdj ¼ E � rj, where the
deformation is represented by the matrix E. From these

configurations, we define the mismatch vectors dj � rdqj �
E � rqj , which give the nonaffine displacements between

two inherent structure configurations. In particular, we
consider static shear deformations with small amplitude
�, E ¼ 1þ �e1e2, where e� are Cartesian unit vectors. In
Ref. [22], we found, as the temperature is lowered towards
the glass transition, characteristic changes, which are
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strongly reminiscent of the systems long time dynamics:
small average mismatch lengths, which are correlated over
large distances.

Results.—In order to study correlations in the direction
of the mismatch field, we define the coarse-grained non-
affine displacement field DbðrÞ ¼

P
jDjðbÞ�ðr� rqj Þ of

the inherent structure configuration, where DjðbÞ are the

coarse-grained mismatch orientations obtained by averag-
ing d0

j ¼ dj=jdjj over a sphere of radius b [30],

D jðbÞ ¼ N�1
j

X

k

d0
k�bðrdqjk Þ: (1)

Here, rdqjk is the distance between particles j and k in the

inherent structure of deformed configuration Xdq, Nj ¼
P

k�bðrdqjk Þ the number of neighbors of particles j within

a distance b, and �bðrÞ ¼ 1 if r � b and zero elsewhere.
For sufficiently small deformations, the mismatch field is
approximately independent of strain amplitude � in a
statistical sense and the use of normalized mismatch vec-
tors d0

j suppresses the strong temperature dependence of

the average mismatch lengths [22].
In Fig. 1, DbðrÞ of a typical configuration is shown at

high and low temperature. The large domains where
jDjj2 � 0:5 at low temperature clearly indicate large re-

gions where the response to the static external deformation
is strongly correlated, in marked contrast to the high tem-
perature behavior.

These observations can be made more quantitative by
studying the distribution of coarse-grained mismatch
lengths hbðD2Þ. For small b, only a single particle contrib-
utes to (1) and hbðD2Þ ! �ðD2 � 1Þ. For increasing b, Dj

includes more and more particles and therefore, with the
decay of correlations, hb accumulates more weight at small
values of D2 until hbðD2Þ ! �ðD2Þ when b becomes large.
The transition between mostly ordered (peak of hb near 1)
and disordered (peak near 0) regions happens at a value of
b, which strongly increases with decreasing temperature
(see, Fig. 2).

The coarse-graining length b is our means to probe the
extent of correlations in the mismatch field on lengths up to
b. Therefore, from the histogram hbðD2Þ we define a static
correlation length �B as the coarse-graining distance b for
which the peak location has moved from one to 1=e. Our
results are robust and the conclusions presented here hold
also for other definitions of �B; see [24]. Figure 3 shows the
correlation length �B as a function of temperature. In the
high temperature liquid phase, we observe a low value of
�B of the order of the particles diameter �, weakly depen-
dent on temperature. In the supercooled regime, however,
�B increases considerably. For the lowest temperatures at
which we can equilibrate the system, T � 0:40, we find
�B � 4� for the largest systems studied here.
We also observe in Fig. 3 a systematic finite-size effect

of �BðTÞ in the supercooled regime, where the correlation
length grows with the linear size L of the system. We
investigate this dependence in more detail because, to-
gether with the significant increase of �B, this behavior is
typical of critical phenomena [31], where the correlation
length � associated with the order parameter characterizing
the transition diverges at the critical temperature Tc as ��
ðT � TcÞ��. Therefore, we perform the same finite-size
analysis which in critical phenomena is used to extract
the critical behavior from data obtained in a finite system.
If the increase of �B upon lowering the temperature is
indeed due to a diverging static correlation length � under-
lying the glass transition, then �B should diverge as well,
and in the infinite system �BðTÞ � t��, where t ¼ ðT �
TcÞ is the distance from the critical point Tc and � the
critical exponent. On the basis of the scaling hypothesis for
critical phenomena [31], the corresponding quantity
�B;LðTÞ in a finite system of linear size L should follow

the behavior

�B;LðTÞ � L�=�Q�B
ðL1=�tÞ; (2)

where Q�B
ðxÞ is a universal scaling function and � is the

FIG. 1 (color online). Coarse-grained nonaffine displacement
field DbðrÞ defined in Eq. (1) for high (T ¼ 1:0, left panel) and
low (T ¼ 0:4, right panel) temperature. The coarse-graining
length was chosen as b ¼ 2:0. The color code illustrates surfaces
of constant jDj2 values. For better visibility, only particles with
jDjj2 � 0:5 are shown.
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FIG. 2 (color online). Histogram of mismatch lengths hbðD2Þ
at high (a T ¼ 1:0) and low (b T ¼ 0:4) temperature for different
values of the coarse-graining length b. At high temperatures, the
typical value of D2 jumps from an ordered (D2 � 1) to a
disordered one (D2 � 0) when b becomes slightly larger than
the particle diameter. At low temperatures, instead, this transi-
tion happens at much larger values of b.
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critical exponent associated to �. Therefore, we plot

�B;LðTÞL��=� as a function of the scaling variable ðT �
TcÞL1=� in Fig. 3. We identify the critical temperature Tc

with the Kauzmann temperature TK, where a phase tran-
sition due to an entropy crisis should be located according
to RFOT and related theories [3,6]. For the system used
here, TK has been determined numerically as TK � 0:30
[9,32]. Fixing this value for Tc, we observe that the nu-
merical data for different temperatures T and system sizes
L collapse onto a single master curve in agreement with
Eq. (2). We find the best data collapse for the critical
exponents � � 0:9� 0:1, and � � 0:65� 0:1, which is
the case shown in Fig. 3. The value of � is very close to
� ¼ 2=3, which is indeed predicted by RFOT for three-
dimensional systems [3] and to � � 0:69 deduced from
light scattering experiments on oterphenyl [10]. The value
� ¼ 2=3 is also compatible with recent simulations [12],
where, however, no proper finite-size scaling was per-
formed. From the quality of data collapse and the inter-

section of �BðTÞL��=� for different system sizes [31], we
estimate that the critical temperature lies in the range
0:25 � Tc � 0:4. Using the finite-size analysis in this
range of temperatures, we end up with the estimates for
the critical exponents � � 0:8� 0:2 and � � 0:7� 0:15.

The precision of these results is limited by the increase of
�B being too weak for the smallest system sizes, which is
probably also the reason why previous studies could ex-
tract only small, roughly temperature independent length
scales from inherent structures [25]. Moreover, the finite-
size analysis in the vicinity of the critical point is made
extremely hard by the long equilibration times. In spite of
these limitations, the critical region is apparently large
enough to be felt in the accessible temperature regime.
Within RFOT, the increasing relaxation time 	 is linked

to the free energy barrier of nucleating a new structure of

linear size �m in the liquid, 	� exp½BðTSconfÞ�
=ðd�
Þ	 �
exp½Að�m=kBTÞ
	 [3,6,19]. The configurational entropy
per particle is denoted by Sconf , d is the spatial dimension,
and 
 ¼ d� 1=� the exponent of the interface free energy
cost of a nucleus. This gives us the possibility to further
check the consistency of our data with the RFOT scenario.
In Fig. 4(a), we plot the relaxation time 	 versus �B=kBT
on a double-logarithmic scale. The relaxation times are
large-N values of 	 taken from Ref. [20], which have been
determined therein from the final relaxation of the inco-
herent scattering function. The fitted line shows that the

form 	� exp½Að�=kBTÞ
	 � exp½A0ð�B=kBTÞ
�=�	 indeed
describes our numerical data quite well. The value of the
exponent 
 we obtain is 
 � 1:6� 0:3. If we identify our
correlation length � with the mosaic length scale �m in
RFOT, this value of 
 we find is in agreement with the
prediction 
 ¼ d=2 of RFOT [3]. It is worth noting that our
analysis is free of inconsistencies reported in Ref. [20]
when looking at length scales from dynamical hetero-
geneity. We can also directly test the connection between
configurational entropy Sconf and correlation length �,

which according to RFOT reads �� ðTSconfÞ�1=ðd�
Þ. In
Fig. 4(b), �B is plotted as a function of TSconf on a double-
logarithmic scale. The data for the latter are taken from

Ref. [33]. Our results indicate that the relation �B �
��=� � ðTSconfÞ��=�ðd�
Þ is indeed valid for the largest
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FIG. 3 (color online). Top: Static correlation length �B of
coarse-grained mismatch vectors as a function of temperature
for different system sizes. Bottom: Data collapse of �B;LðTÞ
according to Eq. (2).
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FIG. 4. (a) The structural relaxation time 	 is plotted versus
static correlation length �B for the system with N ¼ 64 000
particles. The solid line is the best fit to the data and shows an
exponential dependence of the form 	� exp½A0ð�B=kBTÞ1:14	.
(b) The static correlation length is shown as a function of the
configurational entropy Sconf . The solid line is the best fit to the
data and shows the power-law relation �B � ðTSconfÞ�1:02.

PRL 104, 205704 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

205704-3



system we studied. For the exponent, we find ðd� 
Þ�1 �
0:74� 0:14 which again is in agreement with the value
2=d predicted by RFOT and which in addition implies the
validity of the Vogel-Fulcher-Tamman expression 	�
exp½DT=ðT � TKÞ	 [3].

Discussion.—Bringing together concepts from inherent
structure formalism of supercooled liquids and from de-
formations of amorphous solids offers a new perspective
on the long-standing glass problem. In this spirit, we have
employed a new method in order to elucidate growing
static correlations in supercooled liquids. We found direct
evidence for the critical behavior of the static correlation
length close to the glass transition, which has been specu-
lated by several recent theories [3–6]. In particular, our
estimates of the transition temperature, critical exponents,
as well as the link with relaxational dynamics are in
quantitative agreement with the predictions from RFOT
[3]. However further studies are needed in order to deter-
mine the numerical values more precisely. Our results have
important consequences for flow-induced rearrangements
in colloidal glasses [34] and elastic response of amorphous
solids [30], where similar cooperative behavior has been
observed recently.

Our study has been performed at constant density, where
the critical temperature Tc extracted from �B is apparently
below the lowest temperature at which we have been able
to equilibrate the system. However, the critical point would
not necessarily be located at the density chosen here and
only a systematic investigation in the (T, P) plane will shed
further light on its existence, nature, and location. The
long-standing problem of a true thermodynamic phase
transition underlying the slowing down of the dynamics
at the glass transition can now be addressed from a differ-
ent perspective, knowing that a direct structural signature
exists.
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