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‘‘Complete scaling,’’ which maps asymmetric fluid criticality onto the symmetric Ising model, is

extended to spatially inhomogeneous fluids. This extension enables us to obtain a fluctuation-modified

asymmetric interfacial density profile, which incorporates leading effects from the asymmetry of fluid

phase coexistence and the asymmetry of the correlation length. The derived asymmetric interfacial profile

is used to calculate Tolman’s length, the diverging coefficient of the curvature correction to the surface

tension. The amplitude of the divergent Tolman length is found to depend on the asymmetry of the

correlation length.
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Describing real systems by ‘‘ideal,’’ highly simplified,
theoretical models without losing essential physical infor-
mation is a ubiquitous challenge in the quantitative de-
scription of matter. One example is the mapping of
asymmetric fluid criticality onto the symmetric Ising or
lattice-gas model which is invariant with respect to the sign
of the order parameter. Fisher and co-workers showed that
the thermodynamics of critical phenomena in fluids, com-
monly exhibiting asymmetric phase behavior, can be con-
sistently described by mixing all physical-field variables
into the three Ising-model theoretical fields [1]. This recent
formulation of fluid criticality, known as complete scaling,
is supported by both experiment [2–4] and simulations [5].
In particular, complete scaling predicts a new leading-
order singular-contribution to the fluid mean density as a
function of temperature, namely,

ð�0 þ �00Þ
2�c

� 1 � Dj�T̂j2�; (1)

where �0 and �00 are the liquid and vapor densities, �c is the

critical density, �T̂ ¼ ðT � TcÞ=Tc is the reduced distance
to the critical temperature Tc, � ’ 0:326 is an Ising uni-
versal critical exponent, and D is a system-dependent
coefficient, the magnitude of which is especially signifi-
cant in highly asymmetric ionic and polymeric fluids [2].
Here and below, the symbol � indicates asymptotically
equal, while the symbol ’ means approximately equal.

Another important consequence of complete scaling is
the divergence of Tolman’s length �, the coefficient in the
first curvature correction to the surface tension �, that is,

�ðRÞ ¼ �1
�
1� 2�

R
þ . . .

�
; (2)

where R is the radius of a spherical liquid droplet, taken
equal to the radius of the surface of tension and �1 is the
surface tension of a planar (R ¼ 1) interface [6]. Based on
complete-scaling arguments, Anisimov proposed the phe-
nomenological expression [7]

�

2�
’ ��0 þ �00 � 2�c

�0 � �00 ; (3)

where 2� is the ‘‘thickness’’ of the interface, proportional

to the correlation length � / j�T̂j�� with an Ising univer-

sal critical exponent � ’ 0:630. [8]. Since �0 � �00 /
j�T̂j�, Eq. (3) predicts a leading singularity in Tolman’s

length, � / Dj�T̂j���, with �� � ’ �0:304.
However, complete scaling has only been formulated for

thermodynamic properties of homogeneous phases. In this
Letter, we propose an extension of complete scaling to
nonuniform asymmetric fluids. This generalized complete
scaling enables us to derive the asymmetric fluctuation-
modified interfacial density profile of two coexisting near-
critical fluid phases through the well-known symmetric
order-parameter profile of the Ising model, in spite of the
fact that more direct approaches to this calculation are
prohibitively difficult. The asymmetric profile is then ap-
plied to investigate the divergence of Tolman’s length, in
particular, the degree of universality of a new critical-
amplitude ratio. Additionally, previous purely thermody-
namic descriptions of Tolman’s length are shown to be
inadequate. An experiment is proposed to determine the
asymmetry in the correlation length and the effect of this
asymmetry on Tolman’s length.
Hart extended thermodynamics to spatially inhomoge-

neous systems by including the density gradientr� and its
conjugate field w as additional thermodynamic variables
[9]. The field w represents the thermodynamic force re-
quired to establish a density gradient. Thus, for an inho-
mogeneous fluid, the Gibbs-Duhem relation gains an
additional gradient-dependent term:

dP̂ ¼ �̂d�̂þ ŝdT̂ þ r̂ �̂ �dŵ: (4)

In this relation the variables for pressure P̂, density �̂,

chemical potential �̂, temperature T̂, entropy density ŝ,
and the gradient terms are made dimensionless via
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P̂ ¼ P=�ckBTc, �̂ ¼ �=�c, �̂ ¼ �=kBTc, T̂ ¼ T=Tc, ŝ ¼
s=�ckB, r̂ �̂ ¼ ðm1=2r�Þ=�c, and ŵ ¼ w=ðm1=2kBTcÞ,
where kB is Boltzmann’s constant and m is a parameter
which determines the amplitude of the correlation length �

[8]. If the dimensionless Helmholtz energy density f̂ ¼
f=�ckBTc is expanded in terms of ��̂ ¼ ð�� �cÞ=�c and

r̂�, one has

f̂ ’ f̂0 þ 1
2mð1þ ���̂Þjr�̂j2; (5)

where f̂0 ¼ f̂0ð��̂;�T̂Þ is the gradient-independent por-

tion of f̂, and � is a dimensionless coupling parameter
which contributes the correlation length asymmetry. Then,
as shown by Cahn [10], w ¼ mð1þ ���̂Þr�̂. In the
mean-field approximation, the asymmetric gradient contri-

bution to the Helmholtz energy density ���̂jr̂ �̂ j2 �
�ð��̂Þ3=�2 is of the same order, in terms of the tempera-

ture variable j�T̂j, as the two other leading asymmetric

contributions ��T̂ð��̂Þ3 and �ð��̂Þ5 in the Landau ex-

pansion of f̂0. Thus all three asymmetry contributions may
be equally important.

It is known that the asymptotic critical behavior of the
Ising model can be described by two scaling fields, h1
(ordering field) and h2 (thermal field), which are thermo-
dynamically conjugate to two scaling densities, the
strongly fluctuating order parameter 	1, and the weakly
fluctuating 	2. A third field h3 is the critical part of an
appropriate thermodynamic potential [1,2]. In zero order-
ing field (h1 ¼ 0) below Tc in the bulk phases, where
r	1 ¼ 0, the order parameter is

	1 ¼
�
@h3
@h1

�
h2

� �B̂0jh2j�; (6)

where B̂0 is a critical amplitude.
Complete scaling for homogeneous fluids expresses the

fields of the Ising model as functions of all three physical

fields, via h1;2;3 ¼ h1;2;3ðP̂; T̂; �̂Þ [1]. When the Ising fields

are expanded in powers of the physical fields, the lowest-
order terms in the expansions, corresponding to the linear
mixing of the physical fields, result in the leading asym-
metry corrections in the thermodynamic properties [1,2].
Unlike the previously proposed treatment of fluid asym-
metry, which generates an independent ‘‘asymmetry’’ ex-
ponent [11], complete scaling does not generate
independent critical exponents; the power-law exponents
of the asymmetric subsingularities are combinations of the
Ising asymptotic critical exponents.

The extension of complete scaling to inhomogeneous
systems that we propose is formulated as follows:

(1) In analogy with Eq. (4), the gradient of the order
parameter r	1 and its conjugate field h4 are included in
the Gibbs-Duhem relation for the symmetric Ising model,
so that

dh3 ¼ 	1dh1 þ	2dh2 þ r̂	1 � dh4: (7)

(2) The complete-scaling concept of field mixing is then
extended to include the physical field ŵ conjugate to the

gradient of the physical density, and the Ising field h4. The
lowest-order gradient-dependent contribution to the Ising
fields is jŵj2. Thus the generalized complete-scaling equa-
tions become

h1 ¼ a1��̂þ a2�T̂ þ a3�P̂þ 1
2a4jŵj2; (8)

h2 ¼ b1�T̂ þ b2��̂þ b3�P̂þ 1
2b4jŵj2; (9)

h3 ¼ c1�P̂þ c2��̂þ c3�T̂ þ 1
2c4jŵj2; (10)

h 4 ¼ d1ŵ: (11)

The leading asymmetric corrections are captured by a
simplified set of complete-scaling transformations [2]

h1 ¼ ��̂þ a3½�P̂� ŝc�T̂� þ 1
2a4jŵj2; (12)

h2 ¼ �T̂; (13)

h3 ¼ �P̂� ŝc�T̂ ���̂; (14)

h4 ¼ ŵ: (15)

Here, ŝc corresponds to a specific choice of the critical-

entropy density ŝc ¼ ðdP̂=dT̂Þh1¼0;c, which is arbitrary in

classical thermodynamics [2]. The coefficients a1, b1, c1,
and d1, can be absorbed by a normalization of the scaling
fields [2]. For the symmetric Ising or lattice-gas model
a3 ¼ a4 ¼ 0. Equation (13) neglects the physical-field
mixing in h2. This particular mixing is responsible for
the subleading singular contribution to the mean density

of order j�T̂j1�
 [1,2]. While for some simple fluids the
subleading term may be important if a3 is particularly
small, for highly asymmetric fluids, such as ionic liquids
or fluids with large molecular volumes, the leading singu-
lar term always dominates [2–4,12]. The effects of the
subleading singularities on the asymmetric interfacial pro-
files will be published elsewhere.
The physical densities are found in terms of the scaling

densities by combining the Gibbs-Duhem relations given
by Eqs. (4) and (7) with Eqs. (12)–(15). The resulting
expressions, expanded to leading order in the asymmetric
corrections, are

��̂ ’ ð1þ a3Þ	1 þ a3ð1þ a3Þ	2
1; (16)

r̂ �̂ ’ ½1þ ða3 þ a4Þ	1�r̂	1: (17)

To make Eq. (17) consistent with Eq. (16), we must inter-
pret Eq. (17) as describing a coordinate transformation.
This transformation can be consistently formulated if the
gradients are defined as follows:

r	1 � @	1ðrsÞ
@rs

and r�̂ � @�̂ðraÞ
@ra

; (18)

where rs and ra are position vectors which belong to two
distinct coordinate systems for the Ising model and asym-
metric physical variables, respectively. An explicit rela-
tionship between rs and ra is found by combining Eq. (18)
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with Eqs. (16) and (17) and integrating, which yields

r̂ s ¼ r̂a þ ða4 � a3Þ
Z r̂a

0
	1ðr̂0aÞdr̂0a; (19)

where r̂s ¼ rs=2�s and r̂a ¼ ra=2�sð1þ a3Þ are normal-

ized by the correlation length �s � ��
0 j�T̂j�� of the sym-

metric system. Just as in asymmetric fluids where

w ¼ ð1þ ���̂Þr̂ �̂ , the field h4 in the symmetric system

is related to r̂	1 by h4 ¼ r̂	1. This condition, together
with Eqs. (15) and (17), constrains the relationship be-
tween the mixing coefficients:

a4 ¼ �a3 � ð1þ a3Þ�: (20)

Thus even if � ¼ 0, complete scaling induces a coordinate
transformation [cf. Eq. (19)]. It is important to note that,
while the critical fluctuations strongly affect the behavior
of the scaling and, consequently, physical variables, the
mixing coefficients are determined by short-range inter-
molecular forces and thus can be estimated from an appro-
priate mean-field equation of state [7].

As an application of the extended complete-scaling
transformations, we calculate, through the known Ising-
model order-parameter profile, the fluctuation-modified
asymmetric density profile, which is difficult to derive
otherwise. While the z direction is assigned by gravity,
we ignore other effects of gravity [13]. The planar inter-

facial profile is determined by minimizing f̂� �̂1�̂,
where �̂1 is the bulk chemical potential at phase coex-

istence [8]: @ðf̂� �̂1�̂Þ=@�̂ ¼ 0. Multiplying this expres-

sion by r̂ �̂ , integrating, and using Eq. (5), we see that

f̂ 0 � �̂1�̂ ¼ 1
2ŵ � r̂ �̂ : (21)

By inverting the complete-scaling transformations, we can
reexpress Eq. (21) in terms of the symmetric Ising varia-
bles, leading to

ð1� a4	1Þ½h01	1 � h03 þ h3;1� ¼ 1
2h4 � r̂	1; (22)

where h01 and h03 are the gradient-independent portions of

h1 and h3.
The one-dimensional solution of Eq. (22) can be found

perturbatively using the form 	1 ¼ 	ð0Þ
1 þ a4	

ð1Þ
1 and

matching powers of a4. The leading (symmetric) term is
found by solving Eq. (22) with a4 ¼ 0:

	ð0Þ
1 ðẑsÞ ¼ B̂0jh2j��ðẑsÞ: (23)

In the first-order-epsilon approximation (� ¼ 4� d with d
being the dimensionality) the antisymmetric function
�ðẑsÞ reads [8,14,15]:

�ðẑsÞ ¼ tanhðẑsÞ
�
1� ��

6
ffiffiffi
3

p sech2ðẑsÞ
�
: (24)

The term 	ð1Þ
1 is then given by

	ð1Þ
1 ðẑsÞ ¼ � 1

2
@ẑs	

ð0Þ
1 ðẑsÞ

Z ẑs

0
	ð0Þ

1 ðẑ0sÞdẑ0s: (25)

The solution 	1ðẑsÞ can be rewritten in terms of the physi-

cal coordinate system with the transformation given by
Eq. (19). After expanding to leading order in the asymme-
try, we find

	1ðẑsÞ’	ð0Þ
1 ðẑaÞþ

�
1

2
a4�a3

�
@ẑa	

ð0Þ
1

Z
	ð0Þ

1 ðẑ0aÞdẑ0a:
(26)

The complete expression for the planar physical density
profile is found by combining Eq. (26) with the complete-
scaling expression for the density given by Eq. (16):

��̂ðẑaÞ ’ B0j�T̂j��ðẑaÞ þDj�T̂j2��2ðẑaÞ
� 3

2½DþD��j�T̂j2��ðẑaÞ; (27)

where � � @ẑa�ðẑaÞ
R
�ðẑ0aÞdẑ0a, B0 ¼ ð1þ a3ÞB̂0, D ¼

a3B
2
0=ð1þ a3Þ, and D� ¼ 1=3B2

0�. The derived profile

exhibits the correct limiting behavior in the mean-field
limit (� ¼ 0), where it reproduces the result obtained by
Fisher (M. A.) andWortis [16] in the � ¼ 0 approximation,
and in the fluctuation-modified symmetric limit (a3 ¼
a4 ¼ � ¼ 0), where it reduces to 	ð0Þ

1 ðẑsÞ. The derived
density profile near the critical point for heptane is com-
pared with the density profile of a symmetric system in
Fig. 1(a) and with the asymmetric mean-field profile in
Fig. 1(b). Since �2ðẑs ! �1Þ ¼ 1, the second term in

FIG. 1. (a) The density profile given by Eq. (27) (solid curve)
and the symmetric profile by Eqs. (23) and (24) (dots), plotted
for heptane at j�T̂j ¼ 0:01 with B0 ¼ 1:84, a3 ¼ 0:37, ��

0 ¼
0:11 nm [2], and assuming � ¼ a3. (b) The profile functions
�2ðzÞ and �ðzÞ evaluated for heptane (solid curves). The mean-
field (� ¼ 0) results are shown as dashed curves.
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Eq. (27) generates the leading contribution to the non-
analytic mean density in the bulk phases given by
Eq. (1). In contrast, because �ðẑs ! �1Þ ¼ 0, the third
term contributes to the density profile only in the vicinity of
the interface and is responsible for the value of Tolman’s
length.

While the asymptotic planar surface tension [8,14] re-
mains essentially unaltered by the inclusion of fluid asym-
metry, Tolman’s length, is entirely dependent on the
asymmetry. A general expression for Tolman’s length in
terms of the planar interfacial profile was obtained by
Fisher and Wortis [16] in the square-gradient theory.
They found

� ¼
R
z@z�̂R
@z�̂

�
R
z½@z�̂�2R½@z�̂�2 ; (28)

where all integrals are taken from z ¼ �1 to z ¼ 1. By
substituting Eq. (27) into Eq. (28), we have explicitly
calculated the leading singular contribution to Tolman’s
length in the first-order epsilon approximation:

� � � 5

4

�
1þ 4��

375
ffiffiffi
3

p
� ½DþD0

����
0

B0

j�T̂j���; (29)

where D0
� ¼ ð1þ 8��=75

ffiffiffi
3

p ÞD�. In the mean-field limit,

where the leading term / j�T̂j2� and the subleading sin-

gularity / j�T̂j1�
 collapse into / j�T̂j, Eq. (29) exactly
reproduces the previously reported results [16,17], but only
with � ¼ 0. The phenomenological expression (3) also
agrees asymptotically with Eq. (29) if � ¼ 0 and the
prefactor is absorbed in the definition of the interfacial
width.

If we write � � �0j�T̂j���, Eq. (29) with � ¼ 0 sug-
gests a new universal ratio between critical amplitudes,
namely,

� �0B0

D��
0

’ 1:27 ð� ¼ 1Þ: (30)

However, if � � 0, the existence of D0
� / � breaks this

universality. Physically, the asymmetric gradient-term co-
efficient � may be associated with three-body interactions,
which generate a term ��3 in a mean-field equation of
state. As there is no such term in the van der Waals
equation of state, D� vanishes for a van der Waals fluid.
Unlike a3, which determines the singularity in the mean
density, the asymmetric gradient coefficient � cannot be
found from bulk-fluid phase behavior. Consequently, any
purely thermodynamic expressions for Tolman’s length are
incomplete.

The significance of the gradient asymmetry has not been
previously discussed in the literature. It can be shown that
� contributes to the asymmetry of the correlation length,

�2 ’ �2
s

�
1�

�
3a3

1þ a3
þ �

�
B0j�T̂j�

�
; (31)

where the part containing a3 originates from asymmetry in
the thermodynamic susceptibility, while �, which we ex-
pect to be of the same order of magnitude as a3, comes

from asymmetry in the density gradient, as given by
Eq. (5). By measuring the susceptibilities (in the zero
wave-number limit) and the correlation lengths in lighter
and denser coexisting fluid phases by light scattering, one
can obtain a3 and � independently and thus calculate the
Tolman-length amplitude �0.
Complete scaling of spatially nonuniform fluids can be

further extended to include interfaces in fluid mixtures.
Bulk thermodynamic behavior of binary fluids is covered
by conventional complete scaling where four physical
fields are equally mixed into three symmetric Ising scaling
fields [3,4]. Consequently, both density and concentration
inhomogeneities should be incorporated into the scaling
fields. Other possible applications of the proposed ap-
proach go beyond interfacial inhomogeneities in fluids.
Complete scaling can also be extended to the description
of near-critical fluids in external fields, such as the electric
field [18].
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