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Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of

realistic potentials we find a simple scaling relationship between temperature and stress as they affect

viscosity. The scaling relationship provides new insight into the microscopic mechanism of shear flow in

the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape.

The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of

stress-induced glass transition.
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The absence of a well-defined atomic structure in liquids
and glasses presents a major challenge to the effort of
elucidating their properties based upon the atomic struc-
ture. Understanding mechanical properties of glasses, such
as deformation and fracture, is even more difficult to
achieve because the phenomena are highly dynamic and
heterogeneous down to atomic dimensions. However,
through computer simulation we can attain the state of
steady flow which is more accessible for analysis. By
modeling the flow of atoms within the shear band of
metallic glasses with controlled homogeneous steady-state
flow we should be able to gain more fundamental under-
standing of deformation and failure. In this Letter we
demonstrate a direct link between stress-induced mechani-
cal flow and glass-to-liquid transition, through a new scal-
ing relationship observed by simulation on a model bulk
metallic glass (BMG).

As a model system we chose a Zr-Cu-Al glass which has
a relatively low critical cooling rate for glass formation and
can readily be cast into a BMG [1]. The model system is
made of 4000 atoms representing an alloy of Zr50Cu40Al10,
interacting with the embedded atom method (EAM) po-
tential [2], and molecular dynamics (MD) simulation was
carried out using the open code LAMMPS program [3]. The
periodic boundary condition was maintained throughout
the simulation, and temperature, T, was kept constant
through the Nosé-Hoover thermostat [4]. A glassy state
was obtained by melting and equilibrating the system at
high temperature (2000 K) for 10 ns, then cooling the
liquid to designated temperatures with the cooling rate of
1010 K= sec . The change in the thermal expansion coeffi-
cient at T0 ð¼ 860 KÞ suggests a glass transition at the time
scale of the MD simulation. Mechanical shear with a
constant rate ( _�) was applied through the Lees-Edwards
moving boundary condition [5], keeping the temperature
and volume constant.

Typical stress-strain curves are shown in Fig. 1 for
various strain rates. In this geometry only one stress com-

ponent, � ¼ �xy, is relevant and others are negligibly

small. After a brief transient period the system enters the
steady-state flow at a shear stress of�. Below T0 a yielding
peak at �yield is observed before entering the steady state.

The viscosity of the system was calculated from the steady-
state stress by � ¼ �= _�. It has been shown for a model of
granular materials the viscosity-stress data can be nicely
collapsed by scaling them with density [6]. We found that
our data also collapse when � and � are scaled with
temperature [7] instead of density as a variable,
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with � ¼ 1:23, � ¼ 0:6, and 1=�T is plotted against �T in
Fig. 2. This result shows that granular systems and metallic
glasses share the common nature of the flow characteristics
in the vicinity of T ¼ T0 and � ¼ 0, through appropriate
scaling of temperature or density. At high temperatures
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FIG. 1 (color). Typical stress-strain relations at various shear
rates (in the units of ps�1) at T ¼ 100 K. The simulation was
done for constant volume.

PRL 104, 205701 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=205701(4) 205701-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.205701


viscosity usually follows the Vogel-Fulcher-Tammann law,
but near the glass transition temperature it often crosses
over to the power law as in Eq. (1) [8,9].

In this scaling T0 is a singular point playing the role of
the critical temperature in the conventional critical phe-
nomena. However, the glass transition temperature may not
be a true critical point. It is also well known that tempera-
ture and stress are intimately coupled in the liquid state, as
seen, for instance, in shear thinning, which is observed in
all liquids [10,11]. Therefore we enlarged our view and
considered the entire T-� field, rather than focusing on the
vicinity of the glass transition at T ¼ T0 and � ¼ 0.
Figure 3 shows the viscosity as a two-dimensional function
of T=T0 and �=�0, where �0 is the critical stress where �
diverges upon extrapolation to T ¼ 0. Such a plot was
attempted for a binary Lennard-Jones glass [12], over a
somewhat limited range of temperature. By plotting the
results over a wider range of temperature it becomes
evident that the curves of constant viscosity are self-
similar.

Moreover, it was found that the curves of constant
viscosity are given by a surprisingly simple expression,

T
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where the definitions of T0 and �0 are expanded to be
dependent on viscosity. T0ð�Þ is the temperature where
viscosity is equal to � when � ¼ 0, and �0ð�Þ is the shear
flow stress where viscosity is equal to �when T ¼ 0. Note
that T0 ¼ T0ð1Þ and �0 ¼ �0ð1Þ. The even (quadratic)
power of � in Eq. (2) is compatible with the symmetry that
the sign inversion on �ð� ! ��Þ keeps the physics un-
changed. From the scaling in Eq. (1) we obtain
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where �T;�¼0 is the value of �T extrapolated to � ¼ 0.
Also from the data in Fig. 3 extrapolated to T ¼ 0 we
obtain,
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where � ¼ 0:93, and ��;T¼0 is a fitting parameter for the

stress extrapolated to T ¼ 0. The viscosity data collapse
into one master curve when we plot T=T0ð�Þ against
�=�0ð�Þ, as shown in Fig. 4, where the dashed line repre-
sents Eq. (2).
Note that in Fig. 2 the data above and below T0 converge

to two different curves, as in general critical phenomena.
However, in Fig. 4 the data for the whole T-� field collapse
into a single curve. In Fig. 3 T0 is not a singular point, and
for �> 0 the curves for constant viscosity are smooth
through T0. Thus, although these two scaling relationships
are mathematically related, they represent very different
points of view. The first scaling by Eq. (1) describes the
behavior of the stress-viscosity relation as it crosses over
from the mean-field regime to the fluctuation dominated
regime around T0. The second scaling by Eq. (2) does not
assume T0 to be a singular point, but regards the T-� line
defined by � ! 1 as a critical line, and describes the
viscosity behavior as the system approaches in the T-�
field toward this line. This critical line corresponds to a cut
in the jamming phase diagram [13,14] showing the phase
boundary at a constant density. A cut at a constant tem-
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FIG. 2 (color). The plot of scaled viscosity 1=�T vs scaled
shear stress �T for different temperatures.
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FIG. 3 (color). Two-dimensional plot of viscosity as a function
of T=T0 and �=�0, where T0 is as defined in Fig. 2 and �0 is the
critical stress where �0 diverges in extrapolation to T ¼ 0 K.
The white curve shows the line for log10�0 ¼ 5. Note that the
lines with a constant value of � are self-similar.
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perature above T0 in Fig. 3 shows that stress reduces
viscosity, describing the phenomenon of shear thinning
[10,11].

Reference [7], as well as other references (for example
Ref. [15]), interpreted the effect of the external stress on
the flow in terms of the effective temperature [16].
Equation (2), however, suggests an interesting alternative
interpretation of the effects of the external stress. For
instance, we may assume a simple activation model of
viscosity [17], � ¼ �0 expðEa=kTÞ, where Ea is the appar-
ent activation energy. Then viscosity is constant at different
temperatures when EaðT;�Þ=kT � E0=kT0ð�Þ ¼ const.
On the other hand by multiplying Eq. (2) through E0=kT
we obtain

E0 � E0ð �
�0ð�ÞÞ2

kT
¼ E0

kT0ð�Þ ¼ const; (5)

which can be rearranged as

EaðT;�Þ ¼ T

T0ð�ÞE0 ¼ E0 � E0

�
�

�0ð�Þ
�
2
: (6)

Furthermore, by rewriting E0=�
2
0ð�Þ as Veff=2G, where G

is the instantaneous shear elastic constant and Veff is the
effective volume of the flow unit, we obtain

EaðT;�Þ ¼ E0 � Veff

2G
�2: (7)

Equation (7) suggests that the effect of the external stress is
to reduce the apparent activation energy barrier in the local
energy landscape through the self-energy of the external
stress and to reduce viscosity, thereby changing a glass into
a liquid. The evaluation of Veff will be discussed elsewhere.

The result shown here suggests that mechanical failure is
indeed the glass transition induced by applied stress, at a

temperature lower than the glass transition temperature.
This observation allows us to connect the microscopic
mechanism of deformation in the steady-state flow with
that of the glass transition. If we consider locally fluctuat-
ing stress fields, such as the atomic level stresses [18], and
assume that there is a threshold for local atomic level strain
due to topological instability [19] which defines the un-
stable (liquidlike) atomic sites and stable (solidlike) atomic
sites. The density of the liquidlike atomic sites decreases
with decreasing temperature, and when it reaches the
percolation limit glass transition would occur [20].
Recently the glass transition temperature calculated with
this scenario was shown to agree well with experimental
values [21]. The same logic could be applied here in the
following hypothesis: the applied stress biases the stress
distribution and thus the local energy landscape, and makes
some atoms unstable, or liquidlike. If the density of the
liquidlike atoms exceeds the percolation limit the system
flows like a liquid, thus inducing the glass-to-liquid
transition.
The process of establishing the state of steady-state flow

through yielding is spatially inhomogeneous, which re-
quires mesoscopic description [22–24]. Also, because the
MD simulation is classical, quantum corrections are nec-
essary at low temperatures. Specifically �0ð�Þ will be
independent of temperature at low temperatures.
Consequently the curve of constant � will be vertical at
T ¼ 0, making the shape of the constant � curve closer to
the schematics given in Ref. [13].
In conclusion, through simulation on a metallic glass

system with a set of realistic potentials we have quantified
the intimate coupling of temperature and shear stress in
inducing liquidlike flow in glasses. The observed effect is
closely related to the jamming phase diagram. A new
temperature-stress scaling for constant viscosity was
found, providing new insights about the mechanism of
atomic flow under stress in the glassy and liquid state.
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FIG. 4 (color). Plot of T
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�
�0ð�Þ for different temperatures T

and stress � with various shear strain rates _�, demonstrating the
scaling relationship, Eq. (2).
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