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Particles in a perfect lattice potential perform Bloch oscillations when subject to a constant force,

leading to localization and preventing conductivity. For a weakly interacting Bose-Einstein condensate of

Cs atoms, we observe giant center-of-mass oscillations in position space with a displacement across

hundreds of lattice sites when we add a periodic modulation to the force near the Bloch frequency. We

study the dependence of these ‘‘super’’ Bloch oscillations on lattice depth, modulation amplitude, and

modulation frequency and show that they provide a means to induce linear transport in a dissipation-free

lattice.

DOI: 10.1103/PhysRevLett.104.200403 PACS numbers: 05.30.Jp, 03.75.Dg, 03.75.Lm, 67.85.�d

Understanding the conduction of electrons through sol-
ids is of fundamental concern within the physical sciences.
The simplified situation of an electron under a constant
force F within a perfect, nondissipative, periodic lattice
was originally studied by Bloch and Zener [1] over 70 years
ago. Their and subsequent studies revealed that the particle
would undergo so-called Bloch oscillations (BOs), a peri-
odic oscillation in position and momentum space, thereby
quenching transport and hence resulting in zero conduc-
tivity. BOs can be viewed as periodic motion through the
first Brillouin zone, resulting in a Bloch period TB ¼
2@k=F, where k ¼ �=d is the lattice wave vector for a lat-
tice spacing d. They result from the interference of the par-
ticle’s matter wave in the presence of the periodic lattice
structure, requiring a coherent evolution of the wave during
the time TB. Generally, it is believed that conductance is
restored via dissipative effects such as scattering from
lattice defects or lattice phonons [2]. In bulk crystals,
relaxation processes destroy the coherence of the system
even before a single Bloch cycle is completed. These
systems thus exhibit conductivity but prevent the observa-
tion of BOs. To observe BOs, the BO frequency �B ¼
1=TB must be large compared to the rate of decoherence.
In semiconductor superlattices, where the Bloch frequency
is enhanced, a few cycles have been observed [3].

A recent approach to observe and study BOs is to use
systems of ultracold atoms in optical lattice potentials with
a force that is provided by gravity or by acceleration of the
lattice potential. In these engineered potentials, generated
by interfering laser waves, dissipation is essentially absent,
and decoherence can be well controlled [4]. Essentially all
relevant system parameters are tunable, e.g., lattice depth
and spacing, particle interaction strength, and external
force, i.e., lattice tilt. For sufficiently low temperatures, a
well-defined narrow momentum distribution can initially
be prepared. BOs have been observed for thermal samples
[5–7], for atoms in weakly interacting Bose-Einstein con-
densates (BECs) [4,8,9], and for ensembles of noninteract-
ing quantum-degenerate fermions [10]. Noninteracting
BECs [11,12] are ideally suited to study BOs as

interaction-induced dephasing effects are absent, allowing
for the observation of more than 20 000 Bloch cycles [11].
As for any oscillator, classical or quantum, it is natural

that one investigates the properties of the oscillator under
forced harmonic driving. The dynamics of a harmonically
driven Bloch oscillator has recently been the subject of
several theoretical [13–16] and experimental studies [17–
20]. For example, modulation-enhanced tunneling between
lattice sites [18,19] and spatial breathing of incoherent
atomic samples [20] have been observed. Here, for a
weakly interacting atomic BEC in a tilted lattice potential,
we demonstrate that harmonic driving can lead to directed
center-of-mass motion and hence to transport. More strik-
ingly, for slightly off-resonant driving, we observe giant
matter-wave oscillations that extend over hundreds of lat-
tice sites. These ‘‘super-Bloch oscillations’’ result from a
beat between the usual BOs and the drive. They are re-
scaled BOs in position space and can also be used, by
appropriate switching of the detuning or the phase, to
engineer transport.
The experimental starting point is a tunable BEC of

1:2� 105 Cs atoms in a crossed beam dipole trap [21]
adiabatically loaded within 400 ms into a vertically ori-
ented 1D optical lattice [11] as illustrated in Fig. 1(a). The
lattice spacing is d ¼ �=2, where � ¼ 1064:49ð1Þ nm is
the wavelength of the light. Unless stated otherwise, we
work with a shallow lattice with depth V ¼ 3:0ð3ÞER,
where ER ¼ h2=ð2m�2Þ is the photon recoil energy for
particles with mass m. The atoms are initially levitated
against gravity by means of a magnetic field gradient and
spread across approximately 50 lattice sites with an aver-
age density near 5� 1013 cm�3 in the central region of the
sample. We control the strength of the interaction as mea-
sured by the s-wave scattering length a near a Feshbach
resonance [21]. Throughout this Letter, unless stated oth-
erwise, we work at a ¼ 11ð1Þa0, where a0 is Bohr’s radius.
We initiate BOs by removing the dipole trap confinement
in the vertical direction and by reducing the levitation in
1 ms to cause a force that is a small fraction of the
gravitational force mg, for which �B is near 100 Hz. An
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additional harmonic modulation of the levitation gradient
then results in an oscillating driving force FðtÞ ¼ F0 þ
�F sinð2��tþ�Þ, where F0 is the constant force offset,
�F is the amplitude of the modulation, � is the modulation
frequency, and � is a phase difference between the BOs
and the drive. After a given hold time � we switch off all
optical beams and magnetic fields and take in situ absorp-
tion images after a short delay time of 800 �s.

We first determine the excitation spectrum. Figure 1(b)
shows the 1=

ffiffiffi

e
p

width W of the matter wave after � ¼ 2 s
as a function of �. A series of narrow resonances at rational
multiples of �B can clearly be identified. In agreement with
recent experiments [18,19], we attribute these resonances
to modulation-enhanced tunneling between lattice sites,
leading to dramatic spreading of the atomic wave packet.
Tunneling between nearest neighbor lattice sites is en-
hanced when �B is an integer multiple j of � via a
j-phonon process [22], while tunneling between lattice
sites i lattice units apart is enhanced when � is an integer
multiple i of �B. Even combinations thereof, e.g., i=j ¼
2=3 or 2=5, are detectable.

We now investigate the dynamics of the wave packet in
more detail. For this, we use the resonance with i ¼ j ¼ 1
and choose � ¼ �B þ ��, where �� is the detuning. In
Figs. 2(a)–2(d) we present absorption images and spatial
profiles for the weakly interacting BEC. The time evolution
for the width, shape, and center position of the BEC is
dramatic. On resonance (�� ¼ 0), (c) and (d), the atomic
ensemble spreads as it develops pronounced edges. Also,
as we will see below, the center-of-mass motion depends
crucially on the phase �. Off resonance, (a) and (b), for
small detuning �� ¼ �1 Hz, the wave packet exhibits
giant oscillatory motion across hundreds of lattice sites
that we denote as ‘‘super Bloch oscillations’’ (SBO).
Note that, for the parameters used here, the amplitude for
ordinary BOs corresponds to about 4d ¼ 2:1 �m. Also the
width and higher moments of the distribution show oscil-

latory behavior. In Fig. 2(e) we plot the center-of-mass
position as a function of time for �� ¼ �1 Hz. At a ¼
11ð1Þa0 we typically observe SBOs over the course of
several seconds. The dynamics of SBOs strongly depends
upon the site-to-site phase evolution of the matter wave. In
fact, stronger interactions, e.g., a ¼ 90ð1Þa0, distort the
density profile of the driven BEC and alter the BEC’s
oscillation frequency and amplitude. For sufficiently
strong interactions, no SBOs are observed. We also attrib-
ute the wave-packet spreading as seen after one cycle in
Fig. 2(b) mostly to interactions. For the measurements
above, we intentionally use a large modulation amplitude
�F to enhance the amplitude of SBOs. However, all effects
equally exist for �F � F0, as we will also demonstrate
below in Fig. 4(b).
It is useful to develop a simple semiclassical model to

obtain a qualitative understanding of the origin of SBOs.
The only elements of this model are that the wave packet is
accelerated by the applied force and that, once the wave

FIG. 2 (color online). Observation of super-Bloch oscillations
and modulation-driven wave-packet spreading. (a) and (b) In situ
absorption images and density profiles for off-resonant modula-
tion (�� ¼ �1 Hz), showing giant oscillatory motion across
more that 200 sites. (time steps of 120 ms, average of 4 images).
(c) and (d) In situ absorption images and density profiles for
resonant modulation (�� ¼ 0 Hz), showing a wave packet that
spreads symmetrically (time steps of 100 ms, average of 4
images). The phase � was adjusted to allow for a symmetric
spreading, corresponding to a calculated value of � ¼ �=2. For
(a)–(d), the parameters are F0 ¼ 0:062ð1Þmg, �F ¼
0:092ð4Þmg, V ¼ 3:0ð3ÞER, a ¼ 11ð1Þa0. (e) Center-of-mass
motion for a ¼ 11ð1Þa0 (circles), a ¼ 90ð1Þa0 (diamonds), a ¼
336ð4Þa0 (squares).

FIG. 1 (color online). Experimental setup (a) and excitation
spectrum (b) for atoms in a tilted periodic potential. The widthW
is plotted as a function of the drive frequency �. The resonances
correspond to a drastic spreading of the atomic wave packet as a
result of modulation-assisted tunneling [19] when � � ði=jÞ�B,
where i, j are integers. The parameters are F0 ¼ 0:096ð1Þmg,
�F ¼ 0:090ð4Þmg, V ¼ 3:0ð3ÞER, and � ¼ 2 s. The dashed line
is a guide to the eye.
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packet reaches the edge of the first Brillouin zone, it is
Bragg reflected. This model does not include an effective
mass and cannot be used to predict quantitative results.
Figures 3(a)–3(d) show the result of a numerical integra-
tion of the time-dependent acceleration aðtÞ ¼
F0=mþ �F=m sin½2�ð�B þ ��Þtþ�� with periodic
Bragg reflection. For a constant acceleration �F ¼ 0, the
wave packet’s velocity shows the well-known saw-tooth-
like time evolution that corresponds to BOs. The curve in
(a) is symmetric, hence, there is no net movement, as
indicated by the shaded regions of equal area. If, however,
there is additional harmonic modulation at � ¼ �B, the
velocity excursions will not be symmetric about zero,
(b), and result in a net movement for each period, leading
to linear motion, (c). Only for � ¼ �=2 or � ¼ 3�=2
symmetry is restored and no net movement will occur.
Note that, in general, the velocity of the linear motion
depends nontrivially on �. Off-resonant modulation with
�� � �B induces a slowly varying phase mismatch be-
tween the drive and the original Bloch period. This results
in a slow oscillation of the net movement for each Bloch
cycle, which finally sums up to a giant oscillation in
position space, (d). Evidently, this oscillation is the result

of a beat between the drive and the original BO. The initial
direction of the motion depends on� and��. In particular,
a change in the sign of�� at a given� can lead to opposite
motion in position space, as verified experimentally in
Fig. 3(e) for �� ¼ �1 Hz.
A quantitative understanding of SBOs [16] can be ob-

tained from an approach based on Wannier-Stark states
[15]. In essence, the harmonic drive is expected to lead to a
rescaling of the tunneling rate J ! Jeff ¼ JB1ð�F=F0Þ
and the force F0 ! Feff ¼ h��=d for a stationary lattice
with tilt. Here, B1 is the first Bessel function of the first
kind. The amplitude of SBOs is thus given by a new
Wannier-Stark localization length Leff � Jeff=ðdFeffÞ
[16]. In this sense, SBOs are rescaled BOs. We quantita-
tively study the dependence of amplitude and period of
SBOs on ��, �F=F0, and V. The results are shown in
Fig. 4. As expected, the period T is given by 1=��. Also,
the oscillation amplitude scales as 1=��, and its Bessel-
function dependence on �F=F0 is well reproduced. Given
our spatial resolution, we can observe SBOs down to
�F=F0 ¼ 0:08 [Fig. 4(b)]. Note that SBOs can only be
observed with sufficient wave function coherence and for

FIG. 4 (color online). Quantitative analysis of SBOs. (a) The
effect of the detuning �� on the oscillation frequency and the
amplitude of SBOs, with �� ¼ 0:5 Hz (circles), 1 Hz (squares),
2 Hz (diamonds). Right: The solid lines are fits with linear and
���1 dependence, respectively. (b) Dependence of the ampli-
tude of SBOs on �F=F0. The data sets correspond to �F=F0 ¼
1:52 (circles), 0.76 (squares), 0.15 (diamonds), 0.08 (stars).
Right: The solid line is a fit proportional to B1ð�F=F0Þ.
(c) Amplitude of SBOs as a function of lattice depth, V ¼
3ER (circles), 4ER (squares), 5ER (diamonds), 7ER (triangles).
Right: The solid line is a fit proportional to J, for which we omit
the first data point for the shallow lattice. If not stated otherwise,
the parameters for all measurements shown here are F0 ¼
0:062ð1Þmg, �F ¼ 0:092ð4Þmg, �� ¼ �1 Hz.

FIG. 3 (color online). Results from a semiclassical model for
SBOs. (a) For a constant force, here F0 ¼ 0:06mg, the velocity
(in units of @k=m) exhibits a symmetric, saw-tooth-like time
evolution, typical for BOs. (b) Resonant modulation, here with
�F ¼ 0:8F0, alters the symmetric periodic velocity excursions
of normal BOs (� ¼ 0, solid line, � ¼ �, dashed line), leading
to a net movement, (c), with � ¼ 0 (i), � ¼ �=2 (ii), and � ¼
� (iii). An additional detuning �� ¼ �0:1�B results in a peri-
odically changing phase difference and hence in giant oscilla-
tions in position space, (i) and (ii) in (d). On top of the motion,
normal BOs can clearly be seen. The phase of SBOs depends on
the sign of ��, as shown by experimental data in (e), where
F0 ¼ 0:096ð1Þmg, �F ¼ 0:090ð4Þmg, �� ¼ 1 Hz (circles),
�1 Hz (squares).

PRL 104, 200403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

200403-3



well-defined initial conditions, i.e., for sufficient wave-
packet localization in the first Brillouin zone of the lattice.
Nevertheless, incoherent atomic samples exhibit a breath-
ing of the spatial distribution [20] as the oscillation period
is insensitive to the initial conditions. In the work of
Ref. [20], the breathing can be understood in terms of an
incoherent sum over localized Wannier-Stark states that
individually show a breathing motion with period T [15].

The results above provide two mechanisms to circum-
vent the localization inherent in BOs and to induce coher-
ent transport in an otherwise insulating context. As shown
in Fig. 5(a), resonant modulation (�� ¼ 0) causes directed
motion of the wave packet’s center of mass. For longer
times, we find that the motion is approximately linear. The
mean velocity depends on the relative phase� of the Bloch
oscillator and the drive. In the experiment, we varied� via
� ¼ �0 þ ��, where�0 is a constant phase offset, which
depends on the details how BOs are initiated. For off-
resonant modulation, transport can be induced by switch-
ing the sign of �� before a half-cycle of a SBO is com-
pleted. The wave-packet then continues to move in the
original direction. This motion is shown in Fig. 5(b), where
we switch the sign after 400 ms. For comparison, Fig. 5(c)
shows a SBO with T ¼ 1 s without switching.

In summary, we have studied the coherent evolution of
matter waves in tilted periodic potentials under forced
driving and have observed giant SBOs, which result from
a beat of BOs with the drive when a small detuning ��
from the Bloch frequency is introduced. Localization as a
result of BOs is broken, allowing us to engineer matter-
wave transport over macroscopic distances in lattice po-
tentials with high relevance to atom interferometry [23].
We are now in a position to investigate the effect of
interactions on driven transport, for which subdiffusive
and chaotic dynamics have been proposed [24].
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FIG. 5 (color online). Inducing transport. (a) Linear motion for
resonant modulation. �� ¼ 0� diamonds, 65� circles, 120�
triangles, 190� squares. �� ¼ 0� and �� ¼ 190� were chosen
to maximize the speed in opposite directions. The solid lines are
linear fits to the data points excluding the first data point. For
comparison we plot the linear motion that corresponds to a
tunneling rate of Jeff , dotted lines. (b) Directed motion for off-
resonant modulation. �� was switched from �1 to 1 Hz after
400 ms. For comparison, (c) shows the oscillatory motion
without switching (time steps of 80 ms). The parameters are
F0 ¼ 0:096ð1Þmg, �F ¼ 0:090ð4Þmg.
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