
Collinear Four-Wave Mixing of Two-Component Matter Waves

Daniel Pertot,* Bryce Gadway, and Dominik Schneble

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
(Received 10 December 2009; published 17 May 2010)

We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry.

Starting from a single-species Bose–Einstein condensate, seed and pump modes are prepared through

microwave state transfer and state-selective Kapitza–Dirac diffraction. Four-wave mixing then populates

the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross–Pitaevskii

equation are in very good agreement with the experimental data. We show that four-wave mixing can play

an important role in studies of bosonic mixtures in optical lattices. Moreover, our system should be of

interest in the context of quantum atom optics.
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Four-wave mixing is a fundamental, well-studied con-
cept in nonlinear optics and spectroscopy [1]. Its matter-
wave analogue, based on binary collisions in ultracold
atomic gases, was first demonstrated experimentally a
decade ago [2,3], establishing the field of nonlinear atom
optics [4]. In four-wave mixing (FWM), two waves form a
grating from which a third wave diffracts, thus generating a
fourth wave. This process has been used for coherent
matter-wave amplification [5] and for the generation of
correlated atom pairs [4–7]. Energy and momentum con-
servation require the magnitudes of all atomic momenta in
the center-of-mass frame to be equal which, for atoms in a
single internal state, necessitates a two-dimensional ge-
ometry [3]. By modifying the dispersion relation with an
optical lattice, nondegenerate FWM of a single species
becomes possible also in one dimension [8].

Despite considerable theoretical work on atomic FWM
with more than one internal state [9–11], experiments have
only very recently started to explore possible mechanisms
for such FWM [7,12]. The additional internal degree of
freedom allows for degenerate FWM to occur in one
dimension, with pairs of waves in different internal states
sharing the same momentum mode, opening up possibil-
ities to generate nonclassical matter-wave states, e.g., with
macroscopic spin entanglement [10]. In this Letter, we
demonstrate free-space collinear atomic FWM involving
two internal states with distinct, macroscopically popu-
lated momentum modes.

Apart from the relevance for quantum atom optics,
another important context arises in experimental studies
of bosonic mixtures in optical lattices [13–15]. These
systems are of high interest not only in connection with
applications to quantum magnetism [16], but also for stud-
ies of decoherence mechanisms [17], and for lattice ther-
mometry [14,15]. Most experiments with ultracold atoms
in optical lattices to date rely on time-of-flight information.
In particular, a sudden release from the lattice projects the
band populations onto plane-wave states [18]. We find that
for a homonuclear mixture of interacting superfluids,

FWM processes can alter the expected momentum-space
distributions, masking or even mimicking in situ interac-
tion effects.
In order to induce collinear two-component FWM, we

apply a state-selective optical lattice pulse to a Bose–
Einstein condensate containing atoms in two internal states
jai and jbi, as illustrated in Fig. 1(a). The pulse induces
Kapitza–Dirac (KD) diffraction [19,20] producing recoil-
ing jai atoms in both positive and negative momentum
modes j�2i � j�2@kLi where kL ¼ 2�=�L, while the jbi
atoms remain unaffected. Subsequently, as illustrated in
Fig. 1(b), the jbi atoms Bragg diffract from the density
modulation formed by the interference of the recoiling jai
atoms ja; 2i � jai � j2i with those at rest, ja; 0i. Because
of momentum exchange collisions, the recoiling jai atoms
are coherently transferred back into j0i, as recoiling atoms
jb; 2i are produced. This process is formally not distin-
guishable from coherent (pseudo-) spin exchange. Our
system might thus pose an interesting alternative to spinor
condensates for the creation of nonclassical states [10,12].
We note that due to the symmetry of the KD pulse, another,
independent ‘‘copy’’ of the FWM process occurs on the
negative momentum side. For quantum atom optics pur-
poses, this can easily be avoided by using a state-selective

FIG. 1 (color online). Experimental scheme. (a) State-selective
Kapitza–Dirac diffraction of a two-component Bose–Einstein
condensate. (b) Four-wave mixing (solid arrows) with pump
modes jb; 0i, ja; 2i and seed mode ja; 0i transfers jbi atoms to
the output mode jb; 2i. Because of the symmetry of the problem,
the process also occurs for the modes ja;�2i and jb;�2i
(dashed arrows).
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Bragg pulse instead, which also allows for extended con-
trol of the initial mode populations. In the present work,
however, we are content with applying a KD pulse, mainly
out of technical convenience.

Our experimental setup has been described in detail in
Ref. [21]. In a crossed-beam optical dipole trap at 1064 nm
wavelength, we produce nearly pure 87Rb Bose–Einstein
condensates in the jai � jF ¼ 1; mF ¼ �1i hyperfine
state typically containing about 1:6� 105 atoms. The
trap is approximately isotropic with a mean trap frequency
around 50 Hz and an alignment-dependent vertical fre-
quency !z=2� between 40 and 50 Hz. Immediately after
a variable fraction of the condensate is transferred into the
state jbi � j2;�2i via a microwave Landau–Zener sweep
[22], a state-selective lattice beam [23] at �L ¼ 785:1 nm
is pulsed on along the vertical z direction (1=e2 radius
230 �m) for a time �KD. The polarization (�þ) is chosen
such that only the jai atoms feel the optical lattice potential
formed through retro-reflection of the beam. A magnetic
field ð�0:4 GÞ along the beam axis defines the quantization
axis. After release from the trap and a few milliseconds of
free evolution, during which the FWM occurs, a magnetic
field gradient (Stern–Gerlach pulse) spatially separates the
two hyperfine states along the horizontal x axis for detec-
tion. The atoms are imaged after a total time of flight of
15 ms via near-resonant absorption imaging by a 100 �s
long pulse of F ¼ 2 ! F0 ¼ 3 imaging light, combined
with F ¼ 1 ! F0 ¼ 2 repumping light, which ensures
equal detection efficiencies for both hyperfine states.

In Fig. 2, typical absorption images are shown for three
different fractions of jai atoms fa � Na=N. The KD pulse
duration (25 �s) and the lattice depth Va for atoms of type
jai (6 ER, where ER ¼ @

2k2L=2m is the recoil energy), are
chosen such that half of the jai population is diffracted into
j�2i, while higher orders remain largely unpopulated. By
analyzing single-component diffraction patterns [20], we
have determined the lattice depths for each component,
confirming that atoms of type jbi experience < 5% of the
lattice depth seen by the jai atoms. On their own, the jbi

atoms therefore are not affected by the lattice pulse, as
shown in Fig. 2(b). However, when both components are
present, a significant fraction of jbi atoms is transferred
into the j�2i momentum modes [Fig. 2(c)].
We have measured the amount of diffracted atoms in

each state as a function of fa. As shown in Fig. 3(a), the
fraction of diffracted jbi atoms ðNb;þ2 þ Nb;�2Þ=Nb mono-

tonically increases from zero towards a maximum as fa is
increased, consistent with the picture that the grating
formed by interference of the ja; 0i and ja;�2i modes,
from which the atoms in jb; 0i diffract, gets deeper as the
number of jai atoms grows. The relative number of dif-
fracted jai atoms has a pronounced minimum near fa ¼
0:5, which can be interpreted as a ‘‘backaction’’ of the jbi
atoms onto the jai grating.
To obtain a more quantitative understanding, we theo-

retically model our system starting from the coupled
Gross-Pitaevskii equations (GPE) for the order parameters
��ðr; tÞ of the two components � 2 fa; bg

i@@t�� ¼
�
� @

2

2m
r2 þ V tot

� þ X
�2fa;bg

g��j��j2
�
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where g�� ¼ 4�@2a��=m, m is the atomic mass, and the

intra and interspecies s-wave scattering lengths aaa, abb,
and aab in units of a0 are 100.4, 99.0, and 99.0, respectively
[24]. The trapping and lattice potentials are given by V tot

� ¼
Vtrapðr; tÞ þ V�ðtÞsin2ðkLzÞ. Similar to the slowly varying

envelope approximation (SVEA) [3,11], we approximate
the solution of Eq. (1) as an expansion in terms of momen-
tum modes, or wave packets, moving along z with multi-
ples of the recoil velocity vR ¼ @kL=m

��ðr; tÞ ¼
X1

n¼�1
cn�ðtÞeinkLz�0ðr� ẑnvRt; tÞ: (2)

We further assume that the wave packets �0 are of
Thomas–Fermi form and that they expand hydrodynami-
cally after release from the trap [25], which leads to a
significant simplification compared to a full SVEA simu-
lation. On the time scales of interest, phase separation [26]
can be neglected, and we have �� / �0 for both compo-
nents just after the microwave transfer [26]. Since the
momentum spread of �0 is much less than @kL, the modes
in the expansion are quasi-orthogonal. After inserting the
ansatz (2) into Eq. (1), we arrive at a system of coupled
equations for the amplitudes anðtÞ � cnaðtÞ
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and similarly for the other component bnðtÞ � cnbðtÞ. Here,
hnmm0n0 ðtÞ / �ðnþm�m0 � n0Þ denotes overlap integrals
that include the effective temporal decay of the nonlinear
interaction, as the different wave packets separate, and as
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FIG. 2 (color online). Typical absorption images taken after
application of the state-selective Kapitza–Dirac pulse (�KD ¼
25 �s, Va ¼ 6ER), 15 ms time of flight and Stern–Gerlach
separation along x, for the case of (a) only jai atoms present
(fa ¼ 1), (b) only jbi atoms (fa ¼ 0), and (c) equal populations
of both components (fa ¼ 0:5).
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the density decreases during the expansion. The terms
responsible for FWM are of the form b�mbnam (and
a�manbm for the jbi component) with m � n. After ad-
jacent modes (jm� nj ¼ 2), for which the overlap
decays the slowest, have completely separated, the popu-
lations remain frozen, since only equal-momentum self
and cross-phase modulation terms of the forms janj2an
and jbnj2an survive. With a typical Thomas–Fermi ra-
dius Rz � 10 �m, we obtain a typical separation time
tsep � 2Rz=2vR of 1.7 ms.

The full set of observed populations janj2 and jbnj2 after
FWM is plotted in Fig. 3(b), along with predictions of our
model obtained with parameters according to the experi-
mental ones, leaving only the total atom number N as a fit
parameter. The overall agreement between data and theory
is remarkable. The maximum FWMyield occurs near fa ¼
2=3 where the initial populations of the pump and seed
modes are equal, maximizing the FWM term a�manbm at
t ¼ 0 [3]. The data also clearly show the correlated growth
of jb�2j2 and ja0j2, along with a corresponding depletion
of the pumpmodes jb0j2 and ja�2j2, as detailed in the inset.

We note that since the FWM yield is proportional to the
interspecies scattering length as well as to the overlapR
dr j�aj2j�bj2 of the two components, it can serve as a

sensitive probe for both quantities. As a practical example,
we use two-component FWM as a clear ‘‘single-shot’’
diagnostic for the optimization of component overlap. By
carefully canceling magnetic field gradients, we are able to
sustain overlap, i.e., FWM yield, for up to 2 s after the
microwave transfer.

To further confirm the coherence of the observed two-
component FWM as implied by our model, we directly
map out the time evolution of the output mode population
jb�2j2 by interrupting the FWM process after a variable
time through the selective removal of jai atoms with a
50 �s long ‘‘blast’’ pulse of repumping light. As shown in
Fig. 3(c), the atom number in the jb;�2i modes smoothly
grows from zero to a maximum value reached around the
expected separation time. The nonlinear, initially quadratic
growth is indicative of a coherent process [3,5] (other signs
would be an overshoot and oscillations, which however
would require higher densities or longer overlap). To ex-
clude the possibility that the observed growth is merely an
artifact caused by density-dependent losses of jbi atoms
accompanying the blast (due to collisions with jai atoms),
we repeat the experiment with the polarization of the
lattice beam chosen such that both components experience
the same lattice depth of about 6 ER. In this case, we expect
the jb;�2i modes to be populated immediately after the
KD pulse, as indeed can be seen in Fig. 3(c). Further, no
FWM is expected to occur for Vb ¼ Va, as the internal and
external state dynamics are decoupled. By comparing the
observed time evolution for this reference case with the
expected one, we can calibrate our model for the blast-
induced losses, which assumes a relative loss of jbi atoms

proportional to the density of jai atoms in the overlap
region. With this correction, the theoretical time evolution
for Vb ¼ 0 matches the experimental data very well.
So far, we have discussed controlled FWM after appli-

cation of a short optical pulse to induce diffraction. Now,
we turn to the question whether FWM is also relevant for

FIG. 3 (color online). Mode populations after four-wave mix-
ing. (a) Fraction of atoms with momenta �2@kL in state jai
(green circles) and jbi (orange squares). (b) Populations
jcn�j2 ¼ Nn�=N of the modes j�; ni, as indicated in the pla-
quette. The dashed lines (1), (2), and (3) indicate the initial
conditions before FWM, jb0ð0Þj2, ja0ð0Þj2 ¼ ja�2ð0Þj2, and
jb�2ð0Þj2 (where �2 indicates the combined populations). The
arrows indicate the temporal evolution of the populations. The
solid lines represent the predictions of the model (Va ¼ 5:6 ER,
�KD ¼ 25 �s, !z ¼ 2�� 51 Hz, N ¼ 1:4� 105). The inset
shows the transferred jbi population vs the transferred jai
population, where the dashed line represents a slope of unity.
(c) Growth of the population in jb;�2i following the Kapitza–
Dirac pulse for Vb ¼ 0 (orange squares) and for Vb ¼ Va (blue
triangles, �1=2). The FWM was interrupted after a variable
time � by blasting away the jai atoms. Each data point is
averaged over 2–6 runs (here, !z ¼ 2�� 41 Hz, fa ¼ 0:5).
The dashed lines are the predictions of the uncorrected model
(including higher order FWM terms), whereas the solid lines
take into account the loss of atoms during the blasting process
(see text). The blast-loss model was calibrated by fitting to the
Vb ¼ Va data.
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adiabatically ramped-up, state-selective optical lattices.
For such a system, interspecies interactions can be ex-
pected to give rise to diffraction effects qualitatively simi-
lar to those due to FWM. The density profile of the jai
component gets spatially modulated by the optical lattice,
thus forming an ‘‘atomic lattice’’ that, in turn, should
modulate the density of the jbi component, leading to
diffraction peaks at �2@kL immediately after release.
However, we find that, at least as long as both components
are in the superfluid state, FWM is by far the dominant
mechanism for the emergence of recoiling jbi atoms,
caused by the projection of the jai component into plane-
wave momentum modes after release. We note that the
mismatch between the dispersion relations for jai and jbi
atoms suppresses FWM while the lattice is on. For fa ¼
0:5 and Va ¼ 6 ER (Vb ¼ 0), as shown in Fig. 4(a), we
measure a relative population of up to 1.5% in each of the
jb;�2i states. Assuming this to be caused by a density
modulation would require an atomic lattice modulation
depth of 2 ER, more than the chemical potential of the
condensate in the lattice. A blast measurement as dis-
cussed above shows that the population in the observed
peaks slowly grows only after release from the lattice
[Fig. 4(b)], indicating that the peaks are indeed caused
by FWM.

We have performed analogous experiments for differ-
ent final lattice depths Va, and with additional, state-
independent lattices along the x and y directions. These
results will be presented in detail in a future publication. In
brief, we observe similar FWM effects along the state-
dependent axis (cf. also [15], Fig. 8); however, we find
that no FWM peaks are produced when the jai atoms are in
the Mott regime. This is consistent with the notion that
FWM as described relies on the existence of a well-defined
macroscopic phase and thus bears the potential to be used
as a sensitive probe of phase coherence.

To summarize, we have demonstrated collinear four-
wave mixing in a two-component mixture of bosonic

atoms, and find excellent agreement with a simple theo-
retical model. Our work is of relevance both in the context
of quantum atom optics, and for experimental studies of
bosonic mixtures in optical lattices.
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FIG. 4 (color online). Four-wave mixing effects for an adia-
batically ramped-up optical lattice. (a) An jai-selective lattice is
ramped up to a depth of 6:0 ER within 100 ms onto an equal
mixture (fa ¼ 0:5). After release and 17 ms time of flight, jbi
atoms appear in j�2i. (b) Growth of population in jb;�2i as
determined by blasting away the jai atoms after an evolution
time �. Each data point is averaged over 6 runs.
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