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We study the dynamics of quantum and classical correlations in the presence of nondissipative

decoherence. We discover a class of initial states for which the quantum correlations, quantified by the

quantum discord, are not destroyed by decoherence for times t < �t. In this initial time interval classical

correlations decay. For t > �t, on the other hand, classical correlations do not change in time and only

quantum correlations are lost due to the interaction with the environment. Therefore, at the transition time
�t the open system dynamics exhibits a sudden transition from classical to quantum decoherence regime.
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The interaction of a quantum system with its environ-
ment causes the rapid destruction of crucial quantum prop-
erties, such as the existence of quantum superpositions and
of quantum correlations in composite systems [1,2].
Contrary to the exponential decay characterizing the tran-
sition from a quantum superposition to the corresponding
statistical mixture, entanglement may disappear com-
pletely after a finite time, an effect known as entanglement
sudden death [3]. There exist, however, quantum correla-
tions more general and more fundamental than entangle-
ment. Several measures of these quantum correlations have
been investigated in the literature [4–9], and among them
the quantum discord [4,5] has recently received a great deal
of attention [10–23].

The total correlations (quantum and classical) in a bi-
partite quantum system are measured by the quantum
mutual information Ið�ABÞ defined as

I ð�ABÞ ¼ Sð�AÞ þ Sð�BÞ � Sð�ABÞ; (1)

where �AðBÞ and �AB are the reduced density matrix of

subsystem AðBÞ and the density matrix of the total sys-
tem, respectively, and Sð�Þ ¼ �Trf�log2�g is the
von Neumann entropy. The quantum discord is then de-
fined as

D ð�ABÞ � Ið�ABÞ � Cð�ABÞ; (2)

where Cð�ABÞ [see Eq. (3)] are the classical correlations of
the state [4,6,7]. The quantum discord measures quantum
correlations of a more general type than entanglement;
there exists, indeed, separable mixed states having nonzero
discord [13]. Interestingly, it has been proven both theo-
retically and experimentally that such states provide com-
putational speedup compared to classical states in some
quantum computation models [13,24].

The dynamics of quantum and classical correlations in
the presence of both Markovian [15,20] and non-
Markovian [21] decoherence has recently been investi-
gated. It is believed that the quantum correlations mea-
sured by the quantum discord, in the Markovian case,

decay exponentially in time and vanish only asymptoti-
cally [19,22], contrary to the entanglement dynamics
where sudden death may occur.
A remarkable result we demonstrate in this Letter is the

existence of a class of initial states for which the quantum
discord does not decay for a finite time interval 0< t < �t
despite the presence of a noisy environment. Our result is
derived for qubits interacting with nondissipative indepen-
dent reservoirs. It is not yet known whether such phenome-
non can be observed for more general types of
environment. However, this is the first evidence of the
existence of quantum properties, in this case quantum
correlations, that remain intact under the action of an
open quantum channel.
The major obstacle to the development of quantum

technologies has been, until now, the destruction of all
quantum properties caused by the inevitable interaction
of quantum systems with their environment. The fact
that, under certain conditions, quantum correlations useful
for quantum algorithms are completely unaffected by the
environment, for long time intervals, may constitute a new
breakthrough to quantum technologies such as, e.g., quan-
tum computers.
A crucial aspect of the dynamics is that, while the total

quantum correlations measured by the discord remain
constant, classical correlations are lost. Interestingly, in
this dynamical region, entanglement decays exponentially
in time, but at the same time quantum correlations other
than entanglement, measured by dissonance [9], increase
monotonically until t ¼ �t.
We prove analytically that, for certain initial Bell-

diagonal states, when discord starts to decay, i.e., for t >
�t, the classical correlations become constant in time.
Therefore, there exists an instant of time �t at which the
system stops losing classical correlation and starts losing
quantum correlations. The time �t depends on a single
parameter characterizing the initial state. The class of
initial states for which the sudden transition from quantum
to classical decoherence occurs depends on the type of
Markovian noise considered.
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Let us begin by specifying the quantity used for mea-
suring the classical correlations and, therefore, to calculate
the quantum discord by means of Eq. (2). Such a quantity is
in fact a second extension of classical mutual information
and it is based on the generalization of the concept of
conditional entropy. We know that performing measure-
ments on system B affects our knowledge of system A.
How much system A is modified by a measurement of B
depends on the type of measurement performed on B. Here
the measurement is considered of von Neumann type and it
is described by a complete set of orthonormal projectors
f�kg on subsystem B corresponding to the outcome k. The
classical correlations Cð�ABÞ are then defined as [4]

C ð�ABÞ ¼ max
f�kg

½Sð�AÞ � Sð�ABjf�kgÞ�; (3)

where the maximum is taken over the set of projec-
tive measurements f�kg and Sð�ABjf�kgÞ ¼

P
kpkSð�kÞ

is the conditional entropy of A, given the knowledge of
the state of B, with �k ¼ TrBð�k�AB�kÞ=pk and pk ¼
TrABð�AB�kÞ.

We consider the case of two qubits under local non-
dissipative channels; more specifically, we focus on
phase flip, bit flip, and bit-phase flip channels. For each

qubit, the Markovian dissipator is given by L½�AðBÞ� ¼
�½�AðBÞ

j �AðBÞ�
AðBÞ
j � �AðBÞ�=2, with �AðBÞ

j the Pauli opera-

tor in direction j acting on AðBÞ, and j ¼ 1; 2; 3 for the bit,
bit-phase, and phase flip cases, respectively. For simplicity,
we take as initial states of the composite system a class of
states with maximally mixed marginals

�AB ¼ 1

4

�

1AB þX3

i¼1

ci�
A
i �

B
i

�

; (4)

where ci is a real number such that 0 � jcij � 1 for every i
and 1AB the identity operator of the total system. This class
of states includes the Werner states (jc1j ¼ jc2j ¼ jc3j ¼
c) and the Bell states jc1j ¼ jc2j ¼ jc3j ¼ 1.

We first focus on the phase damping (or phase flip)
channel. For the initial state of Eq. (4), the time evolution
of the total system is given by [15]

�ABðtÞ ¼ �þ
�ðtÞj�þih�þj þ �þ

�ðtÞj�þih�þj
þ ��

�ðtÞj��ih��j þ ��
�ðtÞj��ih��j; (5)

where

��
�ðtÞ ¼ ½1� c1ðtÞ � c2ðtÞ þ c3ðtÞ�=4; (6)

��
�ðtÞ ¼ ½1� c1ðtÞ � c2ðtÞ � c3ðtÞ�=4; (7)

and j��i ¼ ðj00i � j11iÞ= ffiffiffi
2

p
, j��i ¼ ðj01i � j10iÞ= ffiffiffi

2
p

are the four Bell states. The time dependent coefficients
in Eqs. (6) and (7) are c1ðtÞ ¼ c1ð0Þ expð�2�tÞ, c2ðtÞ ¼
c2ð0Þ expð�2�tÞ, and c3ðtÞ ¼ c3ð0Þ � c3, with � the phase
damping rate.

The mutual information I½�ABðtÞ� and the classical
correlation C½�ABðtÞ� in this case are given by [8]

I ½�ABðtÞ� ¼ 2þX

k;l

�l
kðtÞlog2�l

kðtÞ; (8)

C ½�ABðtÞ� ¼
X2

j¼1

1þ ð�1Þj�ðtÞ
2

log2½1þ ð�1Þj�ðtÞ�; (9)

where �ðtÞ ¼ maxfjc1ðtÞj; jc2ðtÞj; jc3ðtÞjg, k ¼ �;�, and
l ¼ �. We note that the maximization procedure with
respect to the projective measurements, present in the
definition of the classical correlations of Eq. (3), can be
performed explicitly for the system here considered notic-
ing that (i) the complete set of orthogonal projectors is
given by �j ¼ j�jih�jj, with j ¼ 1; 2, j�1i ¼ cos�j0i þ
ei� sin�j1i, j�2i ¼ e�i� sin�j0i � cos�j1i, and (ii) the
state of the system always remains of the form given by
Eq. (4) during the time evolution.
We now focus on the class of initial states for which

c1ð0Þ ¼ �1 and c2ð0Þ ¼ �c3ð0Þ, with jc3j< 1. These
states are mixtures of Bell states of the form

�AB ¼ ð1þ c3Þ
2

j��ih��j þ ð1� c3Þ
2

j��ih��j: (10)

Inserting Eqs. (6) and (7) into Eq. (8) it is straightforward
to prove that, for this initial condition, the mutual infor-
mation takes the form

I ½�ABðtÞ� ¼
X2

j¼1

1þ ð�1Þjc3
2

log2½1þ ð�1Þjc3�

þ X2

j¼1

1þ ð�1Þjc1ðtÞ
2

log2½1þ ð�1Þjc1ðtÞ�:

(11)

Having in mind Eq. (9) and remembering that c1ðtÞ ¼
expð�2�tÞ, one sees immediately that, for t < �t ¼
� lnðjc3jÞ=ð2�Þ, the second term in Eq. (11) coincides
with the classical correlation C½�ABðtÞ�, since jc1ðtÞj>
jc2ðtÞj, jc3ðtÞj ¼ jc3j. The quantum discord is then given
by the first term of Eq. (11). Hence, for t < �t, the quantum
discord is constant in time. We note that, by changing the
initial condition, and in particular jc3j, we can increase the
time interval t < �t over which the discord is constant. For
increasing values of �t, however, the quantum discord de-
creases towards its zero value obtained for jc3j ¼ 0.
In Fig. 1 we plot the time evolution of the quantum

discord, the classical correlations, and the mutual informa-
tion for c1ð0Þ ¼ 1, c2ð0Þ ¼ �c3, and c3 ¼ 0:6. The plot
clearly shows the sharp transition from the classical to the
quantum decoherence regime occurring at t ¼ �t.
In order to understand the physical origin of the sudden

transition from classical to quantum decoherence, we con-
sider the distances between our state and (i) its closest
classical state and (ii) its closest separable state. We adopt
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the definitions proposed in Ref. [9], and we measure all
distances by means of the relative entropy. In this way, the
former distance coincides with a second definition of dis-
cord, while the latter distance is the relative entropy of
entanglement. We begin by demonstrating that, for the
system here considered, the discord defined by Eq. (2)
coincides with the one introduced in Ref. [9]. To this aim
we notice that the classical state closest to the state of our
system at time t, given by Eq. (5), is [9]

�clðtÞ ¼ qðtÞ
2

X

i¼1;2

j�iih�ij þ 1� qðtÞ
2

X

i¼3;4

j�iih�ij; (12)

with qðtÞ ¼ �1ðtÞ þ �2ðtÞ, where �1ðtÞ and �2ðtÞ are the
two highest eigenvalues given by Eqs. (6) and (7), and j�ii
the corresponding Bell states. In the inset of Fig. 1 we plot
the eigenvalues ��

� and ��
�, giving the weights or popula-

tions of the four Bell states components. The inset shows
that at t ¼ �t the population of j�þi becomes equal to the
population of j��i and, subsequently, it continues to
decrease while the other one grows. As a consequence of
this switch in the second highest population component,
for t < �t, the closest classical state is

�clðt< �tÞ¼1þe�2�t

4
ðj�þih�þjþj�þih�þjÞ

þ1�e�2�t

4
ðj��ih��jþj��ih��jÞ; (13)

while, for t > �t,

�clðt > �tÞ ¼ 1þ c3
4

ðj�þih�þj þ j��ih��jÞ

þ 1� c3
4

ðj��ih��j þ j�þih�þjÞ: (14)

Let us now look at the dynamics of the relative entropy

Dð�AB k �clÞ ¼ �Trf�ABlog2�clg þ Trf�AB log�ABg [9].
Inserting Eq. (5) and Eqs. (13) and (14) into the expression
for Dð�AB k �clÞ, it is straightforward to prove that
Dð�AB k �clÞ ¼ Dð�ABÞ. This result holds for all the states
of the form of Eq. (4). Hence, in the first dynamical regime,
when the discord is constant and only classical correlations
are lost, the distance to the closest classical state remains
constant. At t ¼ �t, the closest classical state changes sud-
denly from the one given by Eq. (13) to the one given by
Eq. (14). Subsequently, for t > �t, �cl remains constant in
time and the state of the system approaches asymptotically
such state, as indicated by the monotonic decay of the
quantum discord. This behavior suggests a sufficient con-
dition for the occurrence of the sudden transition between
classical and quantum decoherence. This transition is
present in the dynamics for those classes of initial states
and dynamical maps for which (i) the state is at all times of
the form of Eq. (4) and (ii) its distance to the closest
classical state is constant.
To further understand the dynamics of the total quantum

correlations, we study the relative entropy of entanglement
E and the dissonance Q defined as the distance to the
closest separable state �S and the distance between �S

and its closest classical state �SC, respectively [9]. Both
quantities can be calculated exactly in our model.
Entanglement takes the simple form E ¼ 1þ �1log2�1 þ
ð1� �1Þlog2ð1� �1Þ, with �1 the highest of the eigenval-
ues given by Eqs. (6) and (7). This equation shows that
entanglement always decays monotonically and it vanishes
completely for t � tS ¼ � ln½ð1� jc3jÞ=ð1þ jc3jÞ�=ð2�Þ.
This result is independent of the entanglement measure
since all entanglement measures coincide and are equal to
zero for separable states. If tS < �t, entanglement disap-
pears completely when the quantum discord has not yet
started to decay so the state of the total system is a
separable state with nonzero discord. These are the states
exploited in the one-qubit model of quantum computation

of Ref. [13]. One can easily check that tS < �twhenever 0<

jc3j<
ffiffiffi
2

p � 1. Figure 2 shows one of such examples.
Moreover, there exist classes of initial separable states
for which discord remains constant for t < �t while entan-

γ t

CD QD

I

C
D

.u.e

γt

FIG. 1 (color online). Dynamics of mutual information (green
dotted line), classical correlations (red dashed line), and quan-
tum discord (blue solid line) as a function of �t for c1ð0Þ ¼ 1,
c2ð0Þ ¼ �c3, and c3 ¼ 0:6. CD and QD stand for the classical
decoherence and quantum decoherence regimes, respectively. In
the inset we plot the eigenvalues �þ

� (blue solid line), ��
� (green

dash-dotted line), �þ
� (red dashed line), and ��

� (violet dotted

line) as a function of �t for the same parameters.

D

E

γt

without
Entanglement

.u.e

FIG. 2 (color online). Dynamics of entanglement (violet dash-
dotted line) and quantum discord (blue solid line) as a function
of �t for c1ð0Þ ¼ 1, c2ð0Þ ¼ �c3, and c3 ¼ 0:3.
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glement is always zero. It is simple to see by direct sub-
stitution that, e.g., the state of the form of Eq. (4) with c1 ¼
�ð1� jc3jÞ=ð1þ jc3jÞ, c2 ¼ �c3ð1� jc3jÞ=ð1þ jc3jÞ,
and 0< jc3j<

ffiffiffi
2

p � 1 displays this behavior.
Let us, finally, look at the dissonance. We obtain Q¼

1þP
4
i¼1pilog2pi � ðp1 þp2Þlog2ðp1 þ p2Þ þ ð1�p1 �

p2Þlog2ð1� pi � p2Þ, with p1 ¼ 1=2, pi ¼ �i=2ð1� �1Þ,
and �1 � �2 � �3 � �4 the eigenvalues of Eqs. (6) and
(7) in nonincreasing order. Figure 3 shows the time evolu-
tion of discord, entanglement, and dissonance, all mea-
sured in entropic units. Remarkably, while entanglement
decays, dissonance increases monotonically in time until
t ¼ �t. This means that while the state of the system ap-
proaches its closest separable state, this state in turns goes
farther and farther from its closest classical state. The
increase in the dissonance indicates an increase in other-
than-entanglement quantum correlations which contribute
to maintain the total quantum correlations (discord) con-
stant. It is worth noting, however, that, as noted in Ref. [9],
dissonance and entanglement do not add to give the dis-
cord because of the subadditivity of correlations. It is
simple to see that, for the bit flip and phase-bit flip chan-
nels, the class of states for which the sudden transition
from classical to quantum decoherence occurs have the
same form of Eq. (10), with c1 and c2 replacing c3,
respectively.

The existence of a sharp transition between classical and
quantum loss of correlations in a composite system is a
remarkable feature of the dynamics of composite open
quantum system that was up to now unknown. The exis-
tence of a finite time interval during which quantum cor-
relations initially present in the state do not decay in the
presence of decoherence opens a series of interesting ques-
tions. Is it possible to exploit the class of initial states
displaying such a property to perform quantum computa-
tion or communication tasks without any disturbance from
the noisy environment for long enough intervals of time?
Which is the most general class of states and of open
quantum systems exhibiting a sudden transition from clas-

sical to quantum decoherence? Finally, and perhaps most
importantly, which are the physical mechanisms that forbid
the loss of quantum correlations at the initial times and that
allow only quantum correlations to be lost after the tran-
sition time �t? We believe that the transition from classical
to quantum decoherence presented in this Letter and very
recently confirmed experimentally [25] will shed new light
on one of the most fundamental and fascinating aspects of
quantum theory.
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