
Comment on ‘‘Minimal Energy Cost for
Thermodynamic Information Processing:
Measurement and Information Erasure’’

In a recent Letter [1], Sagawa and Ueda argue that
Landauer’s principle for information erasure [2] is only
valid for symmetric memories. Landauer’s principle is
intimately connected to the second law and its violation
in asymmetric memories would thus have dramatic con-
sequences [3]. In the present Comment, we explain why
the analysis of the one-bit memory depicted in Fig. 1 of [1]
is not correct.

Following Ref. [1] we consider a one-particle ideal gas
in a partitioned box as the model for a two-state memory.
The particle has probability p0 to be in the left (zero) state
and p1 ¼ 1� p0 to be in the right (one) state. The initial
Gibbs-Shannon entropy of the system is Si ¼
�k

P
npn lnpn and the final entropy Sf after the memory

has been reset to state zero (or one) is zero. An elementary
derivation of the erasure principle makes use of the
Clausius inequality T�S � Q: During a full erasure cycle,
�U ¼ Wera þQ ¼ 0 and the amount of heat �Q given to
the environment is equal to the work Wera done on the
system. It then follows that the erasure work always sat-
isfies, Wera � �F ¼ �T�S ¼ �kT

P
npn lnpn. For the

particular case of a symmetric memory, p0 ¼ p1 ¼ 1=2,
we recover the standard ‘‘kT ln2’’ version of Landauer’s
principle. The above expression is completely general; it
only requires that initial and final states of the system are in
equilibrium, so that the corresponding entropies (and free
energies) are defined. Sagawa and Ueda discuss quasistatic
erasure in a box with symmetric probabilities, p0 ¼ p1 ¼
1=2, but asymmetric volume partitioning, with volume
ratio t: 1� t (0< t < 1) [1]. They calculate the work
required to reset the memory to state zero and find Wera ¼
kT ln2� ðkT=2Þ ln½t=ð1� tÞ�. The latter lies below the
Landauer bound when t > 1=2, leading the authors to the
conclusion that Landauer’s principle only holds for fully
symmetric memories, in contradiction to the simple ther-
modynamic results derived above.

In order to clarify the issue, let us first point out that the
initial state considered in [1] is not an equilibrium state—
its entropy and free energy are therefore not defined.
Equilibrium requires that temperatures and pressures in
both partitions are respectively equal. Applying the ideal
gas law, PV ¼ NkT, we find that volume and probability
ratios are identical, V1=V0 ¼ N1=N0 ¼ p1=p0 [the proba-
bilities (p0, p1) of finding the particle in either partition
being here given by the respective particle number frac-
tions (N0, N1)]. At equilibrium, asymmetric volume parti-
tioning thus implies asymmetric probabilities. Comparing
the nonequilibrium result of Ref. [1] with the equilibrium
result of Landauer is therefore inconsistent [4]. We next

derive the minimal work required to reset a memory with
asymmetric volume and probability ratio. We begin by
noting that the state labelling is arbitrary; resetting the
memory to either zero or one should be physically equiva-
lent. This is obvious for symmetric memories. The work
done by quasistatically compressing the gas from the right
or the left, corresponding respectively to a reset to zero or
one, is in both cases kT ln2. In the second case, the particle
can be brought back to the right-hand side (state zero) by
simply turning the box over, without additional work [5].
The situation seems different for asymmetric memories.
Compression from the right (to zero) requires WR ¼
�kT lnt, which is larger than the Landauer bound
WLandauer ¼ �kT½t lntþ ð1� tÞ lnð1� tÞ� for t < 1=2,
while from the left (to one) WL ¼ �kT lnð1� tÞ, which
is smaller thanWLandauer. However, the information content
is unaffected by the substitution zero $ one. The entropy,
both before and after erasure, is indeed invariant under t $
1� t; so should the work Wera. For t < 1=2, it is advanta-
geous to first reset to one (left compression) and then turn
the box over (to state zero with no extra cost), whereas for
t > 1=2, it is advantageous to directly reset to zero (right
compression). Since the relevant parameter is the ratio t
1� t (or its inverse) and not the values of t and 1� t, the
erasure work is minimized by averaging over right and left
compressions; the minimal value being precisely the
Landauer limit WLandauer, which is clearly invariant under
t $ 1� t, in contrast to the result presented in Ref. [1].
The erasure principle thus holds for both symmetric and
asymmetric memories.
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