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We obtain hydrodynamic equations describing a fluid consisting of chiral molecules or a suspension of

chiral particles in a Newtonian fluid. The hydrodynamic velocity and stresses arising in a flowing chiral

liquid have components that are forbidden by symmetry in a Newtonian liquid. For example, a chiral

liquid in a Poiseuille flow between parallel plates exerts forces on the plates, which are perpendicular to

the flow. A generic flow results in spatial separation of particles of different chirality. Thus even a racemic

suspension will exhibit chiral properties in a generic flow. A suspension of particles of random shape in a

Newtonian liquid is described by equations which are similar to those describing a racemic mixture of

chiral particles in a liquid.
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Equations of hydrodynamics express conservation of
mass, momentum, and energy, and can be written as

@t�þ @iJi ¼ 0; (1a)

@tPi þ @j�ij ¼ 0; (1b)

@tEþ @iJE ¼ 0: (1c)

Here @t and @i denote time and spatial derivatives, �, P,
and E are correspondingly the densities of mass, momen-

tum, and energy, and J, JE, and �̂ are the flux densities of
mass, energy, and momentum (we indicate vector quanti-
ties by boldface symbols and second rank tensors by hats).
The flux densities can be expressed in terms of the hydro-
dynamic variables: the pressure pðr; tÞ, temperature Tðr; tÞ,
and the hydrodynamic velocity vðr; tÞ, which we define via
the equation

�v ¼ J � P: (2)

To lowest order in spatial derivatives we have [1]

�ij ¼ �vivj þ p�ij � �Vij � ��ijdivv; (3)

where Vij ¼ @jvi þ @ivj � 2
3�ijdivv is the rate of shear

strain, and � and � are the first and the second viscosities.
This leads to the Navier-Stokes equations, which should be
supplemented by the equation of state of the fluid and the
expression for the energy current in terms of the hydro-
dynamic variables.

For a dilute suspension of particles in a Newtonian
liquid, the basic hydrodynamic equations need to be sup-
plemented [1] by the conservation law for the current of
suspended particles,

@tnþ v � rnþ divj ¼ 0: (4)

Here nðr; tÞ is the density of suspended particles, and jðr; tÞ
their flux density (relative to the fluid). To linear order in
the gradients of concentration, temperature, and pressure
the latter can be written as

j ¼ �Drn� n�TrT � n�prp: (5)

Equation (2) remains unchanged and can be considered as
a definition of the hydrodynamic velocity v, which is,
generally speaking, different from the local velocity
uðr; tÞ near an individual particle of the suspension.
There are corrections to the flux densities of various

quantities, which are higher orders in spatial derivatives
of the hydrodynamic variables (for a review see, for ex-
ample, Refs. [2,3]). Moreover, there are nonlocal correc-
tions to the Navier-Stokes equations, which cannot be
expressed in terms of higher order spatial derivatives of
hydrodynamic variables [4–7].
Several studies have focused on the effects of chirality

on the motion of suspended particles in hydrodynamic
flows [8–17]. It was shown that nonchiral magnetic colloi-
dal particles can self-assemble into chiral colloidal clusters
[18].
In this article, we develop a hydrodynamic description

for the case of a suspension containing both right-handed
and left-handed chiral particles in a centrosymmetric liq-
uid. We show that in this case the corrections to the Navier-
Stokes equations contain new terms, which are associated
with the chirality of the particles. The significance of these
corrections is that they describe new effects, which are
absent in the case of centrosymmetric liquid. Since certain
types of hydrodynamic flows lead to separation of particles
with different chirality, these corrections are important
even in initially racemic suspensions of chiral particles.
For simplicity we consider the case where the right- and
left-handed particles are mirror images of each other and
are suspended in an incompressible fluid. The extension of
our treatment to more general cases is straightforward.
In a given flow an individual particle of the suspension

undergoes a complicated motion which depends on the
initial position and orientation of the particle. The hydro-
dynamic equations can be written for quantities which are
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averaged over the characteristic spatial and temporal scales
of such motion.

In the presence of chirality the following contribution to
the momentum flux density is allowed by symmetry:

�ch
ij ¼ nch��½@i!j þ @j!i� þ ��1½!i@jn

ch þ!j@in
ch�;
(6)

where!iðrÞ ¼ 1
2 �ijk@jvkðrÞ is the flow vorticity, and nch ¼

ðnþ � n�Þ is the chiral density, with nþ and n� being the
volume densities of right- and left-handed particles, re-
spectively. Eqs. (1)–(6) should be supplemented by the
expression for the chiral current, defined as the difference
between the currents of right- and left-handed particles.
Separating it into the convective part vnch and the current
relative to the fluid jch, we write the continuity equation as

@tn
ch þ divðvnchÞ þ divjch ¼ 0: (7)

Besides the conventional contribution given by Eq. (5)
with n replaced by nch, the chiral current contains a con-

tribution ~jch which depends on the flow vorticity:

~j ch
i ¼ n½�r2!i þ �1!jVij�; (8)

where n ¼ nþ þ n�. The contributions to ~jchi containing
only n!i are not allowed as there should be no chiral
current in a rigidly rotating fluid.

In accordance with the philosophy underlying hydro-
dynamics Eqs. (6) and (8) represent the lowest order terms
in the powers of @ivj, or in the order of spatial derivatives

of v that display the effects of chirality. These terms are
subleading in comparison to those in the conventional
hydrodynamic approximation. Their retention is justified
because they describe new phenomena absent in conven-
tional hydrodynamics. The first term is reactive and arises
from the gradient expansion. The second term is dissipa-
tive and represents the leading term in the expansion in
the rotational Péclet number [19] [see discussion below
Eq. (11)].

Note that according to the Navier-Stokes equations

r2curlðvÞ ¼ �

�
f@tcurlðvÞ þ curl½ðvrÞv�g: (9)

Thus the first term in Eq. (8) arises either due to nonsta-
tionary or nonlinear in v nature of the flow. In particular, in
stationary flows and to zeroth order in the Reynolds num-
ber r2curlðvÞ ¼ 0 and this term vanishes.

In spatially inhomogeneous flows the suspended par-
ticles rotate, generally speaking, relative to the surrounding
fluid. This gives rise to separation of particles of different
chirality due to the propeller effect, and to the chiral
contribution to the momentum flux, Eq. (6).

The rotation of the particles relative to the fluid arises
because of two effects:

(i) In the presence of the spatial dependence of vorticity,
!iðrÞ, the angular velocity of a particle is different from
!iðrÞ. This results in Eq. (6) and the first term in Eq. (8).

(ii) A nonuniform hydrodynamic flow induces orienta-
tional order in suspended particles similar to nematic order
in liquid crystals. In the presence of flow vorticity orienta-
tion of particles induces their rotation with respect to the
surrounding fluid. This contributes both to the chiral stress
and the chiral flux. The latter contribution is described by
the second term in Eq. (8). The contribution to the chiral
part of the stress tensor associated with orientational order
was discussed in Ref. [9].
In most cases of practical importance the Reynolds

number corresponding to the particle size R is small. In
this regime the coefficients�,�1,�, and�1 in Eqs. (6) and
(8) can be obtained by studying the particle motion in the
surrounding fluid in the creeping flow approximation
[20,21]. In this approximation the motion of a particle
immersed in the liquid is of purely geometrical nature
(see, for example, Ref. [22]). Dimensional analysis gives
an estimate

�� �1 � 	R4; �� 	R3; (10)

where R is the characteristic size of the particles, and the
dimensionless parameter 	 characterizes the degree of
chirality in the shape of the particles.
The second term in Eq. (8) describes the effect of

orientation of the particles induced by the hydrodynamic
flow. The degree of orientation of the particles can be
obtained by balancing the characteristic directional relaxa-
tion rate due to the Brownian rotary motion,�T=�R3 with
T being the temperature, with the rate of orientation due to
the shear flow�Vij. Thus at small shear rates the degree of

particle orientation is �Vij�R
3=T. This leads to the esti-

mate

�1 � 	�R4=T: (11)

Using Eqs. (9)–(11) we can estimate the ratio of the second
term in the expression for the chiral current, Eq. (8) to the
first one as �Re�2R=�T, where Re is the Reynolds num-
ber. This ratio is much larger than unity at all reasonable
even if the particle size is of the order of interatomic scale
in the liquid.
The second term in Eq. (8) is the leading term in the

expansion in the rotational Péclet number Pe� Vij�R
3=T:

the larger the Péclet number, the more oriented are the
particles. As one increases the Péclet number to values of
order one or larger, the degree of orientation of particles
should saturate. For example, when Pe � 1, one can ne-
glect rotational diffusion of the particles, and a particle of
an arbitrary shape executes a complicated motion.
Averaged over long time scales, the degree of particle
orientation becomes of order unity. In this regime the
rate of rotation of the particle with respect to the fluid
becomes of the order of the shear rate, and expansion to
lowest order in Vij is no longer valid.

For Pe � 1 the direction of the chiral current is nonun-
iversal; it depends not only on the shear rate and vorticity
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but also on the shape of the particle. However, in this
regime the dependence of the instantaneous velocity of
the particle relative to the fluid on the shear rate and flow
vorticity is purely geometrical and linear [8]. Therefore the
magnitude of the chiral current can be estimated as

~j ch � n	R!: (12)

Similarly, the direction of the chiral part of the momentum
flux, (orientation of its eigenaxes) is also nonuniversal.
However, its magnitude (eigenvalues) remains linear in
the vorticity gradients @i!j [23]. Because of saturation of

the average particle orientation it can be estimated as

�ch � nch��½@i!j þ @j!i�: (13)

In this relation we assumed that the chiral density is
spatially uniform.

Equations (6) and (8) are written for the case when there
is no external force acting on the particles, e.g., for a
suspension of uncharged neutrally buoyant particles. In
the presence of an external force F, there will be additional
contributions to the chiral flux. The linear in F contribu-
tions can be constructed by contracting the antisymmetric
tensor �ijk with the velocity vi, force Fi, and two deriva-

tives @i. For example, the following terms exist when F is
constant: ðF � rÞ!, F�r2v, rðF �!Þ. These terms arise
when the orientation of the suspended particles can be
characterized by a polar vector. In this case the degree of
particle orientation can be estimated as �RF=T. Thus the
coefficients with which these terms enter the chiral current
jch are of order as 	R3=T. In the case when particles do not
have a polar axis the degree of their orientation, and the
corresponding contribution to the chiral flux are quadratic
in F for small force.

The chiral contribution to the stress tensor Eq. (6) leads
to several new effects. A flowing chiral liquid develops
stresses and components of hydrodynamic velocity which
are forbidden by symmetry in the case of a nonchiral
liquid. Since the chiral stress represents a correction to
the conventional viscous stress tensor, its influence can be
studied perturbatively starting from a given flow of a
Newtonian liquid.

Consider a Poiseuille flow between parallel planes sepa-
rated by a distance d: vx ¼ �@xpðd2 � 4y2Þ=8�, vz ¼
vy ¼ 0 (see Fig. 1), with @xp being the pressure gradient.

If the chiral density is uniform the chiral part of the stress
tensor has only two nonvanishing elements, �yz ¼ �zy ¼
��nch@xp=2. It describes a pair of opposing forces per
unit area exerted by the liquid on the top and bottom
planes. These forces are perpendicular to the flow, as
shown in Fig. 1. Assuming nchR3 � 1 and using Eq. (10)
the magnitude of the chiral force per unit area of the plane
can be estimated as

�ch � 	R@xp: (14)

For spatially uniform nch the volume force density gen-
erated by the chiral part of the stress tensor is fchi ¼
�@j�

ch
ij ¼ �nch��r2!i. Then it is clear from Eq. (9)

that fchi is generated only in nonstationary or nonlinear
flows. In the special case of a stationary Poiseuille flow the
chiral part of the stress tensor does not generate a force
density inside the fluid even at large Reynolds numbers.
Thus the flow pattern is not affected by the fluid chirality.
However, in a generic flow with converging or diverging
flow lines the fluid chirality does affect the flow pattern.
This is especially evident in flows, which have a mirror
symmetry in the absence of chiral corrections. In these
cases the chiral contribution to the stress tensor results in
mirror asymmetric corrections to the flow velocity. For
example a chiral liquid flowing between two surfaces
with a varying distance between them, see Fig. 1, will
develop a helicoidal component of velocity which is per-
pendicular to the unperturbed flow. The chiral component
of the velocity, vch, can be obtained by balancing the chiral
force density evaluated on the unperturbed flow (v0) with
the viscous force density arising due to chiral correction,
vch. For an incompressible fluid with a uniform chiral
density this gives

�nchr2!0 ¼ r2vch: (15)

The chiral correction to the hydrodynamic velocity can be
easily found for an exactly solvable flow in a diverging
channel (x 23 of Ref. [1]), see Fig. 1. In this case the
velocity of the unperturbed flow is in the radial direction.
At large Reynolds numbers Re � 1, the vorticity of the
unperturbed flow is localized to a narrow angular region

�
� 1=
ffiffiffiffiffiffi

Re
p

near the boundaries, whereas the flow in the
interior of the channel is potential with the velocity v�
Re=r, r being the distance to the origin of the converging
channel. Assuming nchR3 � 1 and using Eq. (15) we esti-
mate magnitude of the chiral velocity as

vch � �	Re3=2
R

r2
; (16)

where � is the kinematic viscosity.

FIG. 1. A chiral liquid in a Poiseuille flow between parallel
plates exerts a pair of opposite forces on the plates F" ¼ �F#,
which are directed into ( � ) and out of ( 	 ) the page. A flow of a
chiral liquid in a converging or diverging channel develops a
helicoidal component of velocity directed into and out of the
page, as shown at right. The distance to the origin of the channel,
point O, is denoted by r. For a Newtonian fluid the flow lines
(dotted lines) lie in the plane of the figure.
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Taking the channel width and the particles size to be
respectively �1 mm, and �1 �m, assuming ��
10�2 cm2=s, and Re� 100 and using Eqs. (14) and (16)
we estimate the magnitude of the chiral stress and velocity
to be �ch � 10�5	 dyn=cm2 and vch � 	� 10�2 cm=s,
respectively.

Another consequence of Eq. (8) is a possibility of sepa-
ration of particles of different chirality in hydrodynamic
flows. It has been observed in numerical simulations [11–
14] and recent experiments [16]. We note that according to
Eq. (9) in a stationary flow and in the linear approximation
in the shear rate @ivj, we haver2!i ¼ 0, and the first term

in Eq. (8) vanishes. Thus separation chiral isomers in the
absence of external forces acting on the particles is pos-
sible either in nonlinear or in nonstationary flows.

In the practically important case of a stationary Couette
flow, the first term in Eq. (8) vanishes for arbitrary
Reynolds numbers, and the chiral current arises only due
to orientation of the particles. The latter increases with the
rotational Péclet number and saturates at Pe � 1. In this
regime the chiral current becomes linear in the flow vor-
ticity !, Eq. (12). The linear dependence of jch on ! and
saturation of the proportionality coefficient at Pe ! 1 has
been observed numerically in Refs. [11,13].

So far we discussed the case where the suspended par-
ticles consist of the opposite enantiomers of a single spe-
cies. However, the effects considered above exist even in
suspensions of particles of completely random shape in a
nonchiral liquid. In this case the definition of chirality
requires clarification. Some possible measures of chirality
have been discussed in Ref. [24]. Another possibility is to
define the chirality of a particle by considering the direc-
tion of its motion in a hydrodynamic shear flow or under
the action of an ac-electromagnetic field. In these cases one
can relate the degree of particle chirality with the appro-
priate terms in the generalized mobility tensor [20,21]. We
note that the same individual particle can exhibit different
chirality with respect to different external perturbations.

The set of Eqs. (1)–(8) still holds for a suspension of
random particles. In this case nch can be introduced as an
auxiliary quantity defined in terms of the chiral component
of the stress tensor Eq. (6), and corresponds to quantities
averaged over the random shape of the particles. The chiral

current is given by the continuity equation, and ~jch can still
be written in the form of Eq. (8).

Finally, we note that symmetry allows contributions to
~jch that are proportional to the external magnetic field B,

for example ~jch / nchðrTÞ2B. We believe that these effects
are of fluctuational origin similar to those discussed in
Refs. [4–7] and do not study them in this work.
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