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The equilibrium phase behavior of microphase-forming systems is notoriously difficult to obtain

because of the extended metastability of the modulated phases. We develop a simulation method based

on free-energy integration that surmounts this problem and with which we describe the modulated regime

of the canonical three-dimensional axial next-nearest-neighbor Ising model. Equilibrium order parameters

are obtained and the critical behavior beyond the Lifshitz point is examined. The absence of widely

extended bulging modulated phases illustrates the limitations of various approximation schemes used to

analyze microphase-forming models.
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Microphases self-assemble in systems with competing
short-range attractive and long-range repulsive interac-
tions, irrespective of the physical and chemical nature of
these interactions [1]. Microphases are the frustrated
equivalent of gas-liquid coexistence for purely attracting
particles. Periodic lamellae, cylinders, clusters, etc. are
thus observed in a variety of systems, such as multiblock
copolymers [2], oil-water surfactant mixtures [3], charged
colloidal suspensions [4], and magnetic materials [5].
Although the modulated organization is spontaneous, ob-
taining detailed morphological control is notoriously diffi-
cult. Annealing [6], external fields [7], or complex
chemical environments [8] are usually necessary to order
diblock copolymers. Mesoscale periodic textures have
found some technological success as thermoplastic elasto-
mers [2] and nanostructure templates [9], but understand-
ing how to tune and stabilize microphases is essential to
broadening their material relevance.

Because experimental systems provide only limited mi-
croscopic insight into microphase formation, a number of
lattice [10–13] and free-space [14–16] models have been
put forward. Grasping the equilibrium properties of these
models is necessary to resolve the problems surrounding
the nonequilibrium assembly of microphases [17–19].
Though the modulated regime is a central feature of these
systems, microphases have not been accurately character-
ized in any of them. Even for simple models, approximate
theoretical frameworks offer only limited assistance, and
treating microphases with computer simulations is so far
an unresolved problem [20,21]. In this Letter, we overcome
this last issue by developing a free-energy integration
method for modulated phases. We use this method to
determine the phase diagram of the microphase-forming
three-dimensional (3D) axial next-nearest-neighbor Ising
(ANNNI) model, which has reached textbook status
[21,22], but whose characteristic modulated behavior is
still not completely understood. The resulting phase infor-
mation allows us to assess the validity of competing ap-
proximate treatments and to better understand the
phenomenology of related experimental systems.

The ANNNI model was introduced nearly half a century
ago to explain ‘‘helical’’ magnetic order in heavy rare-
earth metals [10,23–25]. Its Hamiltonian on a simple cubic
lattice for spin variables si ¼ �1,

HANNNI ¼ �J
X
hi;ji

sisj þ �J
X
½i;j�

sisj; (1)

favors alignment of nearest-neighbor pairs hi; ji, but frus-
trates long-range order with relative strength � > 0 for
z-axial next-nearest-neighbor pairs ½i; j�. The coupling
constant J determines the temperature T scale with
Boltzmann’s constant kB set to unity for convenience.
The ANNNI model can only be solved exactly in one
dimension [26], but some of its higher-dimensional fea-
tures are nonetheless well understood. In 3D, the topogra-
phy of the T-� phase diagram involves three regions that
join together at a multicritical Lifshitz point [27]: at high T
the system is paramagnetic; at low T and � it is ferromag-
netic; at low T and for sufficiently high � modulated
layered phases form [25]. The ANNNI paramagnetic-
modulated (PM) transition beyond the Lifshitz point is
thought to be part of the XY universality class [28]. For
� < 1=2 the T ¼ 0 ground state is ferromagnetic, and for
� > 1=2 it is the layered antiphase (‘‘two-up-two-down’’).
The sequence of commensurate phases springing from the
multiphase point at T ¼ 0 and � ¼ 1=2, the structure
combination branching processes at low T, and the pos-
sible occurrence of incommensurate phases are also note-
worthy features of the model [29].
In order to detail the phase behavior, approximate theo-

retical treatments, including high- and low-temperature
series expansions [30,31], mean-field [32,33], and other
theories [34–36], have been used. Monte Carlo (MC)
simulations [26,37–39] have reliably determined the
paramagnetic-ferromagnetic transition up to the Lifshitz
point [40], but accurately locating transitions to and within
the modulated regime has remained elusive. Even within
the subset of periodic phases commensurate with the finite
lattice, high free-energy barriers need to be crossed on
going from one modulated phase to another. Patterns

PRL 104, 195703 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
14 MAY 2010

0031-9007=10=104(19)=195703(4) 195703-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.195703


with a metastable nearby periodicity thus persist for very
long times [24,26,38]. Traditional simulation methodolo-
gies that facilitate ergodic sampling of phase space by
passing over such barriers, notably parallel tempering
and cluster moves, are of limited help in microphase-
forming systems. Because the equilibrium periodicity
varies with temperature, sampling higher temperatures
leaves the system in a modulated phase with the wrong
periodicity; because of the high free-energy barriers be-
tween modulated phases and the lack of simple structural
rearrangements for sampling different modulations, the
efficiency of cluster moves is limited.

We develop a simulation method based on free-energy
integration to treat microphases. The free energy of modu-
lated phases allows us to compare the stability of different
periodic patterns and to reliably capture phase transitions.
Some aspects of the procedure are part of the standard
numerical toolkit [41], but additional specifications are in
order. For a given �, T, and wave number modulation q, we
first calculate the absolute free energy F of q-modulated
lamellae at a nearby reference temperature T0, and then
thermally integrate the energy per spin E=N from T0 to T.
In the spirit of Refs. [42,43], the Kirkwood integration
begins from decoupled spins under an oscillatory sinusoi-
dal field with HamiltonianH0 ¼ �B0

P
N
i¼1 si sinð2�qzi þ

�0Þ, where a small phase angle �0 is added to prevent the
lattice sites from overlapping with the zeros of the field. A
scaling field B0 sufficiently strong to avoid melting is
necessary for the reversibility of the integration scheme.
The high free-energy barriers between the neighboring
commensurate periodic patterns would also make phase
transitions highly unlikely even if sections of the path are
formally metastable [26]. Similarly, a sinusoidal reference
state is valid even if the layer profile squares at low T [26],
because there is no phase transition along the integration
path. We perform constant T MC simulations on a periodic
lattice with N ¼ LxLyLz ¼ 402 � 240, unless otherwise

noted. Wave numbers q ¼ n=Lz for integer values of n
keep modulations commensurate with the lattice, which
leaves open the problem of incommensurate phases. Phase-
space sampling gains in efficiency when single-spin flips
are complemented with MC moves that take advantage of
phase symmetries. In the modulated phases, layer ex-
changes allow for thickness fluctuations and lattice drifts
sample the external field; in the paramagnetic phase, clus-
ter moves accelerate sampling in the critical region [40].
For T0 reference integrations, up to 105 MC moves (N
attempted flips) are performed after 5� 104 MC moves of
preliminary equilibration.

The smooth and extended energy curves of the different
modulations are characteristic of the long-lived metastable
nature of the periodic phases (Fig. 1). Even over relatively
long simulation times, metastable systems do not relax to
their equilibrium periodicity. Thorough sampling is pos-
sible without any modulation change if the LxLy cross

section is sufficiently large. The energy gap between
neighboring phases for q’s commensurate with the simu-
lation box reflects the limited choice of modulations on a
finite lattice. In an infinite periodic system, where all
rational modulations are valid but irrational q’s are ex-
cluded, the gap becomes infinitely small because rational
numbers are dense on the real axis [38]. Although they
appear to join together smoothly on the scale of Fig. 1,
neighboring free-energy curves intercept. The intercept
identifies the transition temperature between two modu-
lated phases with an accuracy that vastly surpasses pre-
vious simulation approaches [37,38]. Figure 1 illustrates
the profile of the devil’s staircase for � ¼ 0:7 [34]. The rate
of change of the equilibrium q accelerates upon cooling.
The predicted discontinuity of the function before reaching
the antiphase should make the staircase ‘‘harmless,’’ but
the current numerical accuracy is insufficient to distinguish
this scenario from the ‘‘devil’s last step’’ [10,44].
The PM critical transition temperature Tc, which is

analytically well characterized [30,45], is used to validate
the simulation results. Because the heat capacity per spin
C=N is at best only weakly divergent at Tc (Fig. 2), we also
consider order parameters that are functions of the Fourier

FIG. 1 (color online). Simulation results for � ¼ 0:7.
Top: Energy and free energy per spin for modulations ranging
from q ¼ 1=4 (antiphase) to qc ¼ 0:1917 at melting. The PM
transition Tc ¼ 3:988ð1Þ (dashed line) is extracted from suscep-
tibility measurements (Fig. 2). Bottom: Equilibrium devil’s stair-
case and generalized magnetization mðqÞ. The power-law decay
of mðqÞ with � ¼ 0:34ð4Þ is superimposed (solid line).
Inset: Snapshot of the antiphase with differently shaded beads
for si ¼ �1.
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spin density ~sq � P
N
i¼1 sie

i2�qzi and thus naturally capture

modulations. In the paramagnetic phase, the z-axis static
structure factor SðqÞ � h~sq~s�qi=N grows upon cooling and

diverges at the critical wave number qc obtained in Fig. 1
[26,30]. But the system-size divergence of SðqÞ on the
modulated side makes it ill-suited for determining Tc in
simulations. The generalized magnetization per spin

mðqÞ � N�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~sqih~s�qi

q
also causes problems, because it

averages to zero as the lattice drifts [13]. To correct for this
problem, we maximize the real component of ~sq with a

phase shift for each configuration, before taking the ther-
mal average. The resulting function shows the character-
istic power law mðqÞ � jT � Tcj� decay (Fig. 1). The
transition is, however, most clearly identified from the
generalized Binder cumulant [21] (not shown) and the
generalized susceptibility

NT�ðqÞ � h~sq~s�qi � h~sqih~s�qi ¼ NSðqÞ � N2m2ðqÞ;
(2)

which diverges with system size �ðqcÞ � jT � Tcj��

(Fig. 2) as does �ð0Þ at an Ising-like transition. The Tc

results are in very good agreement with the series expan-
sion [30,45], indicating that Tc can be identified to within 1
part in 100 using C from the standard lattice size. The
resulting determination of the PM transition (Fig. 3) is also
more reliable than the rare earlier MC results [26,46],
because of the larger system sizes used.

We also examine the suggested XY character of the PM
transition [28]. The derivative of ln½SðqcÞ=N� with J=T
gives the correlation length divergence exponent �, while
the exponent ratios �=� and �=� are determined by finite-

size scaling of C=N and �ðqcÞ, respectively (Fig. 2) [21].
The exponent ratios above �L, though consistent with each
other, may suggest that the PM transition has a universality
that is not of XY type. In particular, � has a positive sign
and �=� is significantly different from the XY value for the
ratio, which may explain the discrepancy of the series
expansion � results for large � (see Fig. 2 and caption)
[30,45].
More significantly, the approximate treatments, which

capture the external boundaries of the modulated regime
reasonably well [35,36], qualitatively disagree on the in-
ternal structure of that regime. On the one hand, as with the
mean-field treatment [32,33] and the soliton approximation
[34], the effective-field method fills the modulated interior
with exceptionally stable ‘‘simple periodic’’ [44] bulging
phases, such as the ‘‘three-up-three-down’’ q ¼ 1=6 phase
and the q ¼ 1=5 phase [35]. On the other hand, the tensor
product variational approach (TPVA) predicts rather nar-
row widths for the commensurate phases [36]. The simu-
lation results bulge less than is suggested by the first
scenario. The rate of change of q with � and T slows in
certain parts of the modulated regime, but all of the phases
commensurate with the periodic box are stable in turn. The
stability range of the different modulated phases is overall
fairly small and no exceptional stability is observed for the
simple periodic phases q ¼ 1=6 and q ¼ 1=5 (Fig. 3),
unlike for q ¼ 1=4. The q ¼ 1=6 phase does bulge, but
increasing the system size, which allows for a more refined
q selection, results in a shrinking stability range (Fig. 3), in
opposition to the q ¼ 1=4 phase whose stability range is
system-size invariant. For the q ¼ 1=5 phase, the range of
stability increases slightly with � in simulation, which is
also due to the finiteness of the lattice. It is possible that the

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1
κ

Paramagnetic

Ferromagnetic

Antiphase

Modulated

series expansion TPVA effective field

T

 1

 2

 3

 4

 0.45  0.5  0.55  0.6

T

κ

q=1/6

802×480
402×240

 1

 2

 3

 4

 0.5  0.6  0.7  0.8

T

κ

q=1/5

FIG. 3 (color online). Lifshitz point (d) [40] and simulation
phase boundaries from �ðqcÞ (h), C (�), and F (� and dotted
line). High- [30,45] and low-temperature (up to third order
around the multiphase point) [31] series expansions as well as
effective-field [35] and TPVA [36] results are indicated. Stability
region of phases q ¼ 1=6 (left inset) and q ¼ 1=5 (right inset)
are compared with different theoretical approaches.
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FIG. 2. Finite-size scaling of �ðqcÞ at � ¼ 0:7 around the PM
transition with � ¼ 0:60ð3Þ and �=� ¼ 2:13ð3Þ. Inset (a) Same
for C=N with �=� ¼ 0:18ð2Þ. Inset (b) Simulation and series
expansion � compared with Ising (� < �L) and XY (� > �L)
exponents (dashed lines); �L ¼ 0:270 result from Ref. [40].
Rushbrooke and hyperscaling equalities are obeyed within error
bars.
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reduced range of stability of these phases compared to the
mean-field predictions is related to the relatively low
roughening transition (Tr ¼ 2:445 [47]) in the correspond-
ing Ising model compared to the temperatures studied here.
Further study is needed to clarify this point. The absence of
widely extended bulging phases suggests that the lack of
qualitative agreement between observations in magnetic
systems, such as CeSb [5,48], and the mean-field stability
ranges is to be expected. The commensurate phases ob-
served are those that are kinetically accessible on experi-
mental time scales [26] or whose stability is due to
corrections beyond simple spin models. Neither effect
suggests a preferable agreement with mean-field
predictions.

In this Letter we have presented a methodology for
simulating layered microphases, but modulated assemblies
can exhibit a variety of other symmetries, under the control
of an external magnetic field or by tuning the chemical
potential in the corresponding lattice gas model.
Generalizing the approach to other order types will greatly
benefit the study of more elaborate microphase-forming
systems and pave the way for studies of the nonequilibrium
microphase assembly, where most of the material’s chal-
lenges lie. Generalization to frustrated quantum systems is
also conceivable as long as the sign problem can be sur-
mounted [49].
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