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(Received 19 January 2010; revised manuscript received 30 March 2010; published 11 May 2010)

We study the behavior of a Bose-Einstein condensate in which atoms are weakly coupled to a highly

excited Rydberg state. Since the latter have very strong van der Waals interactions, this coupling induces

effective, nonlocal interactions between the dressed ground state atoms, which, opposed to dipolar

interactions, are isotropically repulsive. Yet, one finds partial attraction in momentum space, giving

rise to a roton-maxon excitation spectrum and a transition to a supersolid state in three-dimensional

condensates. A detailed analysis of decoherence and loss mechanisms suggests that these phenomena are

observable with current experimental capabilities.
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Since being introduced by Landau in a series of seminal
articles [1], the notion of a roton minimum in the disper-
sion of a quantum liquid has been pivotal to understanding
superfluidity in helium. This later led to the prediction of a
peculiar solid state upon softening of the roton excitation
energy [2], simultaneously possessing crystalline and su-
perfluid properties. In such a supersolid [3], the particles
that must supply the rigidity to form a crystal, at the same
time provide for superfluid nonviscous flow. Forty years
after its conjecture, this apparent contradiction continues to
attract theoretical interest and has ushered in an intense
search for experimental evidence in solid 4He, whose
interpretations are currently under active debate [4,5].

Here, we demonstrate how three-dimensional roton ex-
citations can be realized in atomic Bose-Einstein conden-
sates (BECs), thereby introducing an alternative system to
study supersolidity. The supersolid phase transition is
shown to arise from effective interactions, realized through
off-resonant optical coupling [6–8] to highly excited
Rydberg states. Owing to the strong increase of atomic
interactions with their principal quantum number n, reso-
nantly excited Rydberg gases have proved to be an ideal
platform to study strong interactions in many-body sys-
tems [9] on short microsecond time scales. The present
approach—based on off-resonant two-photon excitation
[see Fig. 1(a)] of Bose-condensed alkaline atoms—permits
us to utilize the strong Rydberg interactions over much
longer times of �100 ms. In particular, we consider cou-
pling to nS Rydberg states with vanishing orbital angular
momentum, which, as opposed to dipole-dipole interac-
tions, gives rise to isotropically repulsive interaction po-
tentials for the ground state atoms, and, thus, ensures
stability of the condensate.

The system is described as a gas of N atoms with mass
M at positions ri, each possessing a ground state jgii and
an excited nS Rydberg state, denoted by jeii. The two
states are optically coupled with a two-photon Rabi fre-
quency � and detuning � [see Fig. 1(a)]. Defining cor-

responding transition and projection operators �̂ðiÞ
�� ¼

j�iih�ij (�;� ¼ e; g), the resulting N-particle interaction
can be written as

Ĥ I ¼
X
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ge describes the laser coupling

and VeeðrijÞ ¼ C6=r
6
ij > 0 denotes the van der Waals

(vdW) interaction between two Rydberg atoms at a dis-
tance rij ¼ ri � rj. Because of the strongC6 � n11 scaling

of the vdW coefficient, such Rydberg-Rydberg atom inter-
actions are orders of magnitude larger than those of ground
state atoms. We are interested in the potential surface

FIG. 1 (color online). (a) Schematics of the considered three-
level atom, illustrating the laser coupling between the atomic
ground state jn0Si and the Rydberg state jnSi. For�1 � �1, the
system reduces to an effective two-level atom, with the states
jgi � jn0Si and jei � jnSi coupled with a two-photon Rabi
frequency � and detuning �. (b) Effective potential resulting
from the off-resonant coupling to the strongly interacting
Rydberg states for n ¼ 60 and � ¼ 50 MHz. Panels (c) and
(d) provide an enlarged view of the potential showing the
contributions from both ground state-Rydberg atom and ground
state-ground state atom interactions (solid line) as well as the
sole contribution from the latter (dashed line).
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WGðr1; . . . ; rNÞ that asymptotically connects to the many-
body ground state jGi ¼ �kjgki, under the condition of
far-off-resonant driving �=j�j � 1 and for �< 0. Under
the latter condition the N-body potential energy of the
many-body ground state jGi is separated from the excited
states by at least � [10], justifying the use of a Born-
Oppenheimer (BO) treatment for the atomic dynamics on
the potential surface WG. The BO surface WG can be
determined from a many-body perturbation expansion in
the small parameter �=j�j � 1, which up to fourth order
only involves coupling to the singly and doubly excited
many-body states jEii ¼ jeii �k�i jgki and jEiji ¼
jeieji �k�i;j jgki. Explicitly, we obtain

WG ¼ 2
X
i�j
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Omitting constant terms, the leading-order, N-body BO
surface is given by a sum of binary effective potentials

UðrijÞ ¼ ~C6=ðr6ij þ R6
cÞ, exemplarily shown in Fig. 1(b).

The peculiar shape of U is easily understood within a
simple two-atom picture: For far-distant atomic pairs
(rij � Rc), a small fraction ð�=2�Þ2 is independently

admixed to each ground state atom, such that UðrijÞ is of
vdW type with an effective coefficient ~C6 ¼ ð�=2�Þ4C6.
At smaller distances, however, the interaction shift VeeðrijÞ
renders dressing to the doubly excited jEiji states ineffec-
tive, such that the effective potential approaches a constant

value below a critical distance Rc ¼ ðC6=2@j�jÞ1=6.
Typically, Rc can take on rather large values of a few �m.

For simplicity, the above discussion has ignored inter-
actions between pairs of ground state atoms as well as
ground state-Rydberg atom interactions. Both, however,
can be included in the calculations of the effective potential
[see Fig. 1(c)]. Although being comparably strong, the
range of the corresponding contributions is considerably
smaller than Rc. Upon avoiding photoexcitation of
Rydberg-molecular resonances [11], these additional po-
tentials may, thus, be described in terms of an s-wave
scattering pseudopotential, with a scattering length a. On
the other hand, the large value of Rc prevents such a

simplified treatment for UðrÞ. However, as long as ~C6 �
@
2R4

c=M, its effect can be described within a first Born
approximation [12,13]. With these simplifications and in
the zero-temperature limit, one arrives at the following
nonlocal, nonlinear Schrödinger equation
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for the condensate wave function �ðrÞ. The contact inter-
action term / g ¼ 4�@2a=M may be tuned to very small
values. For clarity, it will, hence, be omitted in the follow-
ing and briefly discussed at the end of this work.

For small ~C6 the BEC ground state corresponds to a
homogeneous superfluid with density �0. Its elementary
excitations with wave number k and corresponding energy
� are calculated from the corresponding Bogoliubov–

de Gennes equations, which yield �ðkÞ2 ¼ @
2k2

2M ½@2k22M þ
2�0

~UðkÞ�, where ~UðkÞ is the Fourier transform of the
interaction potential UðrÞ. Upon appropriate length and
energy scaling (see Fig. 2), the dispersion is determined

by a single dimensionless parameter � ¼ �0M ~C6=@
2Rc,

parametrizing the interaction strength. Asymptotically, the
dispersion relation �ðkÞ has phonon and free-particle char-
acter, at small and large k, respectively. However, due to
the inner potential plateau at r < Rc, the momentum space
potential ~U has negative attractive contributions around
k ¼ krot � 2�=Rc, such that the spectrum develops a roton
minimum at k ¼ krot (see Fig. 2) for sufficiently large �>
�rot � 4:8. The corresponding roton gap � decreases with
increasing � and ultimately vanishes at �inst � 50:1 [see
Fig. 3(a)], marking the onset of a roton instability, at which
density modulations may develop without energy cost.
In ultracold gases, a similar behavior was found in

tightly confined, pancake-shaped dipolar BECs [14,15].
While it is the partially attractive nature of the anisotropic
interactions that generates the 2D roton excitations in this
case [16], it also leads to collapse in the post-roton-
instability phase, thus precluding formation of supersolid
density modulations [17,18] in higher than one dimension
[19]. The present interactions, on the other hand, are
entirely repulsive, which may indeed provide for stable
regular density modulations.
Addressing this question requires us to go beyond the

linear analysis discussed above. We, hence, performed
numerical simulations of Eq. (2) on a three-dimensional
grid of �107 grid points with periodic boundary condi-
tions. Because of the nonlinear character of the Gross-
Pitaevskii equation, a standard imaginary-time integration
may generally not converge to the true ground state of the
system. As also found for lattice-confined dipolar bosons
[20], there is a large number of stationary states that
correspond to local minima of the total energy. As a con-

FIG. 2. Dispersion relation �ðkÞ for different values of the
interaction parameter �. The arrow indicates the roton gap �.
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sequence, the system generally approaches a glassy state
with short-range ordered density modulations, when start-
ing from a homogenous initial state (see below). We, thus,
used variational calculations, based on periodically ar-
ranged Gaussians with varying width and lattice constant,
to provide the proper initial wave function for a subsequent
imaginary time evolution according to Eq. (2).

Some of the obtained energies are shown in Fig. 3(b).
For small values of � the BEC ground state is a homoge-
nous superfluid. At a critical value of �suso � 30:1, one
finds a transition to a stable supersolid state. This first-
order transition precedes the roton-instability [21] and

takes place at a finite roton gap of �suso � 0:66
@
2k2rot
2M . The

existence of several competing states with similar energies
but different crystal symmetries [see Fig. 3(b)] may gen-
erally complicate the experimental preparation of ordered
states. In this respect, the dynamical tunability of the

interaction strength ~C6 via changing the laser intensity
can serve as a useful tool to steer the BEC evolution.

In order to demonstrate this point, we also studied the
time evolution, starting from a homogenous BEC. As a
specific example, we discuss the BEC dynamics for a
simple time dependence of �, shown in Fig. 4(a). The
calculation starts from a homogenous condensate with
small random phase noise and uses a complex time inte-
gration with a small imaginary contribution [22]. The
instantaneous increase of � at time t ¼ 0 from � ¼ 0–60
induces the roton instability. This sudden parameter
quench, however, causes relaxation towards a short-range
ordered, ‘‘glassy’’ [5] state [Fig. 4(b)], as discussed above.
As � is decreased close to the phase transition some of the
structures vanish entirely, leading to a mixed phase in

which extended superfluid fractions of nearly constant den-
sity coexist with density-modulated domains [Fig. 4(c)].
The latter increase in time [Fig. 4(d)], and ultimately
merge to form sizable ‘‘crystallites’’ of regular density
modulations [Fig. 4(e)].
Turning to a discussion of the experimental feasibility,

we consider a particular example of coupling to 60S
Rydberg states in a 87Rb condensate, for which Rydberg
excitation has recently been demonstrated [23]. Figure 5
shows the corresponding ‘‘phase diagram’’ for a typical
density of 1014 cm�3, also including a finite s-wave scat-
tering length a > 0. The latter only leads to some increase
of the critical Rabi frequencies for inducing the roton
instability. Importantly, the transition to a supersolid can
be realized with Rabi frequencies of a few hundred kHz,
and the condition j�j � � can be well fulfilled deep in the
roton-instability regime. Yet, the detuning is sufficiently
small to avoid excitation of nearby Rydberg states and
near-resonant dipole coupling to adjacent pair states for
distances * Rc. For typical values of Rc, the number of
atoms within a single density peak is on the order of 103,
which justifies the applied mean-field description in terms
of Eq. (2).
Major limitations for the stability of Rydberg gases

generally stem from the finite lifetime of the involved
excited states and from autoionization of close Rydberg
atom pairs, initiated by near-resonant dipole-dipole cou-

FIG. 3 (color online). (a) Roton gap � as a function of the
interaction parameter �. (b) Energy density " ¼ �0

2N h�j �@
2r2

2M þ
Ĥj�i for different crystal symmetries relative to the energy
density "hom ¼ �2�=3 of a homogeneous BEC. Panel (c) pro-
vides an enlarged view around the transition point. The effective
Rydberg state lifetime for excitation of 87Rb to n ¼ 60 (C6 ¼
9:7	 1020 a:u: [26]) with � ¼ 50 MHz and �0 ¼ 1014 cm�3 is
shown in (d).

FIG. 4 (color online). Snapshots of the BEC dynamics for a
time-varying interaction parameter �ðtÞ shown in (a). Panels (b)–
(e) show the density along orthogonal slices through the simu-
lation box at times indicated in (a). The upper and right axes
in (a) show the actual time and Rabi frequency for a 87Rb BEC
with n ¼ 60, � ¼ 50 MHz, and �0 ¼ 2	 1014 cm�3.
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plings to energetically close pair states [24]. In the present

case, the latter are suppressed by a factor ð�2�Þ4½r12ij =ðr6ij þ
R6
cÞ2� due to the interaction blockade of doubly excited

states, and, thus, limited to negligible small values of
30 mHz for the parameter range of Fig. 3(d). Rydberg state
decay, due to spontaneous emission and blackbody radia-
tion, is more significant with typical rates on the order of
	� 10 ms�1. However, since the Rydberg state is only
weakly populated by the far-off-resonant coupling to the
ground state, the resulting effective decay rate 	eff ¼
ð�=2�Þ2	 can be decreased to much smaller values. As
shown in Fig. 3(d), for typical atomic densities and laser
parameters the effective lifetime is as large as several
seconds, over the entire range of relevant interaction pa-
rameters. A second loss mechanism arises from spontane-
ous decay of the intermediate P state (with rate 	0), used to
drive the 5S ! n0P ! nS two-photon transition [see
Fig. 1(a)]. Again, the corresponding effective decay rate
	0
eff ¼ ð�1=2�1Þ2	0 is greatly suppressed for small ratios

�1=�1, which, however, also reduces the two-photon Rabi
frequency � ¼ �1�2=2�1. With �2 of a few hundred
MHz and �1=�1 ¼ 10�3, one realizes a two-photon Rabi
frequency of several hundred kHz, as considered in the
example of Fig. 5. Such large Rydberg Rabi frequencies
(�2) could be achieved by choosing a 6P state for the two-
photon transition, allowing one to drive the Rydberg tran-
sition with a strong 780 nm laser. At the same time this
gives a longer intermediate-state lifetime 	0�1 ¼ 121 ns
[25], and with �1=�1 ¼ 10�3 yields long effective life-
times of 	0�1

eff ¼ 0:5 s. Together with the small value of

	eff , this ensures sufficiently low loss rates to observe the
phenomena discussed in this work (cf. Fig. 4).

In summary, we have shown that off-resonant Rydberg
excitation of ultracold atoms provides a promising route
for the preparation of three-dimensional supersolid phases
in Bose-Einstein condensates. The unambiguous realiza-
tion of this elusive state opens up a range of new studies,
from investigations of thermal effects to supersolid forma-
tion in finite systems and their dynamical response to
perturbations, such as trap rotations.

Generally, the described setting offers new avenues for
the realization of complex nonlocal media, where the sign,
shape, and strength of interactions can be tuned through

proper choice of the addressed Rydberg state and the
applied laser parameters, and even permits local spatial
control of nonlocal interactions via tightly focused beams.
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