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We apply a method based on the theory of Markov processes to fractal-generated turbulence and obtain
joint probabilities of velocity increments at several scales. From experimental data we extract a Fokker-
Planck equation which describes the interscale dynamics of the turbulence. In stark contrast to all
documented boundary-free turbulent flows, the multiscale statistics of velocity increments, the coeffi-
cients of the Fokker-Planck equation, and dissipation-range intermittency are all independent of R, (the
characteristic ratio of inertial to viscous forces in the fluid). These properties define a qualitatively new

class of turbulence.
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Introduction.—Recent experimental observations of
fluid flow turbulence generated by fractal grids like the
one shown in Fig. 1 have revealed some remarkable prop-
erties. Turbulence generated by space-filling fractal square
grids is homogeneous and isotropic far enough down-
stream where it freely decays exponentially and not as a
power law as is the case in all previously well-documented
boundary-free turbulent flows (regular grid turbulence,
wakes, jets, etc.) [1,2]. As predicted by a theoretical study
[3], this exponentially decaying turbulence is locked into a
single length scale, meaning that the inner Taylor micro-
scale A and the outer integral length scale L are both
proportional to it. As a result, the ratio L/ stays constant
during decay, although the Reynolds number changes [4].
This implies an independence of the ratio of outer to inner
length scales L/A on Reynolds number which means that
fractal-generated homogeneous isotropic turbulence is fun-
damentally incompatible with the usual Richardson-
Kolmogorov cascade picture of small-scale turbulence
dynamics where, as the Reynolds number increases, the
range of scales needed for the turbulence energy to cascade
down to scales small enough for dissipation to occur, also
increases. In other words, a wider range of length scales is
needed for the Richardson-Kolmogorov cascade to cause
turbulence to dissipate at higher Reynolds numbers.
Indeed, L/A is proportional to, and therefore increases
with, the Taylor length-based Reynolds number R, in all
boundary-free turbulent flows [1,5] which are not fractal
generated.

Standard statistical analysis of small-sale turbulence is
based on two-point correlations and their dependence on
the distance r between the two points. A central quantity is
the longitudinal velocity increment &(r),

§(r) = ulx +r) — u(x), (D

where u denotes the fluctuating velocity component in the
direction defined by two points x and x + r. As mentioned
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above and shown in [3,4], fractal-generated turbulence can
be such that (£(r)?) = uZ,.f(r/I) where the brackets (.. .)
denote an averaging operation, U, is the rms of u(x), fisa
dimensionless function, and [ is a single length scale
determined by the fractal grid, independent of R, and
such that L ~/ and A ~ [. This self-preserving form of
the second-order structure function is qualitatively very
different from the basic Kolmogorov scaling (£(r)?) =
Ums f(r/L, 7/M) = ing(r/L, L/7) where f and g are
dimensionless functions, 1 is the Kolmogorov micro-
scale, and L/n ~ Ri/ % (equivalently L/A ~ R,). This
Kolmogorov scaling involves two different length scales,
one outer (L) and one inner (n or A), and is based on the
Richardson-Kolmogorov phenomenology which also re-
quires that g(r/L) ~ (r/L)*/? in the intermediate asymp-
totic range N <Kr<L as L/n—oo, so that
(&(r)?y ~ (€r)*/ in that range with € ~ u},,/L.

These exceptional properties of fractal-generated turbu-
lence, in particular, the apparent absence of a conventional
Richardson-Kolmogorov cascade, call for a deeper analy-
sis of its multiscale structure. The study of all structure
functions (£(r)") is equivalent to the study of the proba-
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FIG. 1. Fractal square grid.
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bility density functions (PDF) p[£&(r)]. Such a study can
reveal whether it is in fact p[ £(r)] which is self-preserving
and independent of R, or whether it has a Kolmogorov
two-scale (inner and outer) dependence and therefore de-
pends on R),. However, as there are infinite different pos-
sible interscale processes to generate the same one scale
p(€) statistics, a full multiscale characterization is needed
in terms of the multiscale PDF p(&, &4, ..., &) where
&, = &(r,,) for m=0,1,..., M. This multiscale PDF is
the joint probability of finding velocity increments on
several scales and goes beyond the traditional analysis
based on structure functions as p[£(r)] can be deduced
by integrations. Here we study this multiscale PDF for the
purpose of achieving a most general differentiation be-
tween fractal-generated turbulence and other boundary-
free turbulent flows.

The analysis we use gives access to the multiscale PDF
p(&o, &1, ..., €y) by characterizing the underlying sto-
chastic interscale process in the form of a Fokker-Planck
equation. If the stochastic process for the evolution of the
velocity increments from scale to scale (ry <ry—; <
... < ry) has Markov properties, i.e., if

PEmlép—1, ... o) = p(Emlép—1), (2

the multiscale PDF p(&,,, ..., &, &) can be expressed by
a product of conditional PDFs p(&,,|£,,—1). The stochastic
process for these conditional PDFs can be described by a
Kramers-Moyal expansion. If the fourth-order Kramers-
Moyal coefficient DW is zero, the expansion truncates after
the second term (Pawula’s theorem) and becomes a
Fokker-Planck equation:
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where for simplicity we use the notations & = £(r) and
&y = &(rg) with r < ry. The drift and diffusion functions

DW and D® can be estimated as Kramers-Moyal coeffi-
cients pointwise by

DUE N = fim

< [TE - oo - anlgead @)

It has been shown for several different flows [6-10] that
(a) the process has Markov properties, (b) DW vanishes or
is small enough to be neglected, and (c) the experimental
(conditional) PDFs of the velocity increments can be re-
produced by integration of the Fokker-Planck equation,
including intermittency effects.

Experimental results.—We analyze hot-wire measure-
ment data from turbulence generated in a wind tunnel by
a fractal square grid shown schematically in Fig. 1. The
design of this grid is space filling in the sense that the

fractal dimension Dy of the line defined by all the bars
without their thickness takes the maximum value 2. The
spanwise thickness of these bars determines the blockage
ratio independently of the value of Dy, and it is 25% here,
which is small compared to regular and active grids. The
ratio of the thicknesses of the largest to that of the smallest
bars of the grid is ¢, = 17 [11]. Measurements are taken for
two different flow velocities at five different downstream
positions in the decay region, where the turbulence is
small-scale homogeneous and isotropic [4]. For compari-
son, we use results from [7,8] for hot-wire measurements
of the streamwise velocity component along the center line
of a cryogenic free jet, as well as new results from the
analysis of hot-wire measurements of the streamwise ve-
locity component in the center of the wake of a cylinder
with diameter D =2 cm at downstream-distance x =
100D.

For the fractal grid data we confirm the result of [4] that
A is almost independent of downstream position. We find
that the stochastic process for the velocity increments has
Markov properties for scale separations Ar =r,,_| — r,,
greater than the Einstein-Markov coherence length Igy,
which is defined as the smallest A r for which Eq. (2) holds.
We estimate /gy with the (Mann-Whitney-)Wilcoxon test,
which tests the validity of the equation p(&|&;, &) =
p(&,1€,) for different values of Ar (cf. [7]). For the fractal
grid data, we find a constant ratio of /gy;/A = 0.73 * 0.09,
which is comparable to previous results for other turbulent
flows, where Igy/A = 0.8 [9].

We determine the Kramers-Moyal coefficients with two
different methods. The first method directly uses definition
(4), determining the limit of Ar — 0O with a linear fit to the
conditional moments on the right-hand side of Eq. (4) in
the range lgyy = Ar =< 2lgy;, following [7,8]. The drift and
diffusion functions at each scale r can then be approxi-
mated by linear and second-order functions in &, respec-
tively:

DY(& r) = —dy ()€, )

D&, 1) = dyy(r) — dyy (P € + dp(r) €% (6)

The second method uses numerical optimization to find the
optimal coefficients d;;(r) of Egs. (5) and (6). Here, the
Kullback-Leibler entropy is used to minimize the distance
between the empirical conditional PDF p(¢&,1€,,_ ), and
the conditional PDF obtained by numerical integration of
the Fokker-Planck equation (3) [12]. Both the direct and
optimization methods lead to consistent results.

The velocity increments &(r) are given in units of their
standard deviation in the limit » — o0, o, which is iden-
tical to +/2 times the standard deviation o, of the velocity u
[7]. This normalization allows us to compare the Kramers-
Moyal coefficients of different flows.

Figure 2(a) shows that the coefficient d;; has a similar
dependence on r for the fractal grid as for the free jet, and
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FIG. 2 (color online). Coefficients d;; (a) and d, (b) as func-
tions of the scale r for the free jet (J), from [8], and fractal square
grid (S). Reynolds numbers R, are given in the legend.

does not depend significantly on the Reynolds number for
both flows. In contrast, the coefficient d,, does depend
strongly on R, for the free jet [7,8], but not for the fractal
grid, as can be seen in Fig. 2(b). The coefficient d, is
linear in » and thus can be approximated by

dy(r) = d;og- (7

As shown in Fig. 3, d5, follows a power law in R, for the
free jet [8], as well as for the cylinder wake data where the
exponent seems to be smaller. In contrast, the slope d’z‘0 1s
approximately constant for fractal grid turbulence. For
both dy; and d,,, the optimized coefficients differ only
slightly from the ones estimated by the classical method.

Renner et al. [7,8] also find a strong R, dependence of
the coefficients d,; and d,, for free-jet data. For the fractal
grid, we find no systematic dependence on R, for the
optimized values of these coefficients.

As an alternative and independent verification of the
Reynolds number independence of the statistical properties
of fractal grid turbulence we now investigate the condi-
tional PDFs p(£|&,), where r << r. Note that these are the
fundamental quantities which contain the information of
the stochastic process integrated over a range of scales.
Most importantly, the conditional PDFs do not contain the
errors and uncertainties which arise in estimating the
Kramers-Moyal coefficients.
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FIG. 3 (color online). Slopes d5, from Eq. (7) as functions of
R) for the free jet, cylinder wake, and fractal grid. The free-jet
data are taken from [8]. The straight line represents a power law
d3, = 2.8Re%/3 from [8], where R, ~ Re'/2.

Figure 4 shows the conditional PDFs p(£|&;), as well as
the PDFs p(&), which are obtained by integration over &,
for r = 3lgy and rg = 9lgy, for the fractal grid, free jet,
and cylinder wake. The PDFs for high and low Reynolds
numbers are plotted into the same graph for comparison.

The (conditional) PDFs of the fractal grid data in
Fig. 4(a) are practically identical at different Reynolds
numbers. The small deviations in the tails of the distribu-
tions can be attributed to statistical errors due to the small
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FIG. 4 (color online). Conditional PDFs p[&(r)|£(ro)] (left),
and PDFs p[£(r)] (right, rotated by 90° to illustrate the relation
to the plots on the left), for r = 3/gy; and ry = 9lgy. (a) fractal
grid, Ry = 153 (solid), 740 (dashed). (b) free jet, R, = 124
(solid) 352 (dashed). (c) cylinder wake, R, = 163 (solid), 338
(dashed).
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FIG. 5 (color online). Flatness F, = (u?)/{u?)? of the velocity
derivatives u, = du/dx for different fractal square grids in
comparison to other types of turbulence.

number of events in the corresponding bins. In contrast to
this, the (conditional) PDFs of the free jet and cylinder
wake data in Figs. 4(b) and 4(c), respectively, exhibit large
differences for different Reynolds numbers.

The conditional PDFs p(£|&,) characterize the inter-
scale dynamics of the small-scale turbulence. Our results
strongly suggest that there is a qualitative difference be-
tween the interscale dynamics of turbulence generated by
space-filling fractal square grids and the interscale dynam-
ics of other boundary-free turbulence such as jet and wake
turbulence. The conditional PDFs p(£|&,) of our fractal-
generated turbulence do not depend on Reynolds number
whereas those of other turbulent flows do. This is probably
the most fundamental way in which these two different
classes of turbulence differ. A particular consequence of
the Reynolds number independence of p(&|&,) is the
Reynolds number independence of p(&) which is obtained
by integrating p(&|&,) over &. This is confirmed by the
right plots of Fig. 4 where it is also shown that p(¢) is
R, dependent in jet and wake turbulence.

The method of stochastic analysis applied in this Letter
is limited to scales r larger than the Einstein-Markov
length /gy (=A) and therefore so are our conclusions
concerning p(€&|&,). However, if we allow ourselves to
extrapolate the Reynolds number independence of
pl&(r)] to all scales r, then our fractal-generated turbu-
lence is incompatible with Kolmogorov scaling (£(r)") =

uz..g,(r/L, L/n) (where L/n ~ Ri/z) and must instead
obey self-preserving single-length-scale forms (£(r)") =
ul f(r/1) as previously reported for n = 2 [3,4].

The second remarkable consequence of such an extrapo-
lated Reynolds number independence of p[£(r)] is the
absence of Reynolds number dependent dissipation-range
intermittency, unlike all documented flows (see [2,13]).
Our data strongly support this conclusion. Figure 5 is a

plot of the derivative flatness F; it is clear that it does not
depend on R,, in very stark contrast with all other docu-
mented turbulent flows where F, grows with R) [13].

Conclusions.—Homogeneous and isotropic small-scale
turbulence generated by a low-blockage space-filling frac-
tal square grid (Fig. 1) is similar to other boundary-free
turbulent flows in that the stochastic process for the evo-
lution of the velocity increments from scale to scale has
Markov properties for scale separations greater than the
Taylor microscale A. However, this fractal-generated tur-
bulence differs qualitatively from other documented
boundary-free turbulent flows [2,7,8,13] in that the result-
ing drift and diffusion functions (5) and (6) and the multi-
scale joint probability functions which they determine are
all independent of R,. The single-scale probability density
function of velocity increments is also independent of R,.
This implies the absence of (inner and outer) Kolmogorov
scaling and of R)-dependent dissipation-range intermit-
tency. These properties are in stark contrast with all docu-
mented turbulent flows [2,7,8,13]. Thus we believe we
have found a qualitatively new class of fluid flow
turbulence.

These findings have significant implications for the issue
of universality and pave the way for hitherto inconceivable
studies on the very conditions which allow the Richardson-
Kolmogorov cascade to hold or not, over and above the
intermittency corrections usually studied.
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