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The standard theory of nuclear fusion rates in strongly interacting plasmas can be (correctly) derived

only when the energy release Q is large compared to other energies in the problem. We exhibit a result for

rates that provides a basis for calculating the finite Q corrections. Crude estimates indicate a significant

defect in the conventional results for some regions of high density and strong plasma coupling. We also

lay some groundwork for a path integral calculation of the new effects.
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The calculations of nuclear fusion rates in strongly
coupled equilibrium plasmas, as required for some stellar
environments, nearly all rely on one simple premise,
namely, that the rate per unit volume ws of fusion of ions
I1 and I2 is given by

ws ¼ n1n2h�viK1;2ðr ¼ 0Þ=Kð0Þ
1;2ðr ¼ 0Þ; (1)

where n1, n2 are the number densities of the species, � is
the cross section in vacuum, and K1;2 is the two-body

correlator in the presence of the plasma. Kð0Þ
1;2 is the corre-

lator in the absence of the plasma, and basically cancels out
the dependence of the cross section factor on the Coulomb
interaction between I1 and I2. The calculation of K1;2 has

engendered much literature, e.g. ,[1] and references cited
therein, in which the correlator is calculated classically in
Monte Carlo simulations at larger distances, leading to an
effective two-body potential defined as VeffðrÞ ¼
� log½K1;2ðrÞ�=�, where � ¼ ðkBTÞ�1. This is followed

by a quantum tunneling calculation using this potential to
obtain the overlap at (near) zero separation. This ‘‘basi-
cally classical’’ approach has provided the rates that are
actually used in stellar calculations in which the plasma is
strongly coupled. It has been tested in a very small number
of quantum path integral calculations [2,3] of the correlator
under some rather specific conditions (very degenerate
electrons, one component plasma). The results appear to
be generally supportive of the basically classical approach,
at least in some domains [4].

In the this Letter we address the fact that the assumption
(1) that underlies both of these approaches is not justified
in some domains in which it is currently being used. A
particular fusion reaction has an energy release Q, and it is
only when Q is large that (1) can be established as a valid
approximation, as noted in Refs. [5,6]. Here we go a step
further both in addressing the question of how big Q must
be in order that (1) be usable, and in finding a framework
for numerical evaluation in the cases in which it is not. The
results are inconsequential for solar physics, but relevant in
denser systems.

For the case of two ions in and two ions out, I1 þ I2 !
I3 þ I4, we take the nuclear fusion Hamiltonian as a point
coupling, describing the idealized case in which all of the
energy dependence of the laboratory cross section in the
relevant energy range is from Coulomb interactions,

Hnf ¼ ge�iQt
Z

drc y
3 ðr; tÞc y

4 ðr; tÞc 1ðr; tÞc 2ðr; tÞ þ H:c:;

(2)

whereQ is the energy release in the fusion. Here the c i are
nonrelativistic quantum fields that describe creation or
annihilation of the respective ions, in a Heisenberg picture
with respect to the complete Hamiltonian. The fields could
be Fermi or Bose; deviation from Boltzmann statistics for
the ions is inconsequential.
The remainder of the complete Hamiltonian is taken as

H ¼ H1;2 þH3;4 þHpl þHc where H1;2 and H3;4 are the

respective kinetic energies plus Coulomb interactions of
the initial and final systems in the absence of the surround-
ing plasma, Hpl contains all of the kinetic energy and

Coulomb interactions among themselves of the plasma
particles, and Hc is the coupling of the fusing particles
and the fusion products to the plasma particles.
We refer the reader to Ref. [5] for the derivation of the

basic formal rate expression based on (2),

w ¼ g2
Z 1

�1
dteiQt

Z
drhc y

1 ðr; tÞc y
2 ðr; tÞc 3ðr; tÞc 4ðr; tÞ

� c y
4 ð0; 0Þc y

3 ð0; 0Þc 2ð0; 0Þc 1ð0; 0Þi�; (3)

where the notation h. . .i� indicates the thermal average in

the medium, hOi� � Z�1
P Tr½O expð��HÞ� with ZP the

partition function. We take a one component ionic plasma
neutralized by degenerate electrons. In this case the plasma
coordinates are the ionic positions R1::::RN . Then we can
transform the result (3) into
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w¼C
Z
dr

Z 1

�1
dteiQt

Z
dR1; . . . ;dRN; . . . ;dR

0
1; . . . ;dR

0
N

�hr1¼ r2¼0;R1; ::RNje�ð��itÞHjr1¼ r2¼ r;R0
1; ::R

0
Ni1;2

�hr3¼ r4¼ r;R0
1; :R

0
Nje�itHjr3¼ r4¼0;R1; ::RNi3;4; (4)

where the first two arguments in the kets are the coordi-
nates of the reacting ions in the fusion process and the
coordinates Ri stand for all the other ions in the plasma.
The redundant subscripts 1, 2 and 3, 4 on the respective
brackets hi are a reminder of which of the reacting ions are
present in the states within the brackets. The multiplying
constant is C ¼ Z�1

P n1n2g
2. The individual steps in going

from (3) to (4) are simple: first the expression of the
Heisenberg fields in terms of Schrödinger fields, c SðrÞ ¼
exp½�iHt�c Hðr; tÞ exp½iHt�, then introduction of the
single particle states for the respective reacting particles,

jri ¼ c y
S ðrÞj0i and the explicit introduction of the plasma

coordinates.
The result (4) is equivalent to the interaction picture

result Eq. (2.53) of Ref. [5]. The latter is better suited to
perturbation expansions; the former to our present
purposes.

To getws of the standard theory as given by (1) we strike
the space and time dependence of the first bracket in (4)
and take the factor involving the fusion products to be
independent of the plasma coordinates,

ws ¼ C
Z

dR1; :::dRN

� hr1 ¼ r2 ¼ 0;R1; ::RNje��Hjr1 ¼ r2 ¼ 0;R1; ::RNi1;2
�

Z 1

�1
dteiQt

Z
drhr3 ¼ r4 ¼ rje�itH3;4 jr3 ¼ r4 ¼ 0i3;4:

(5)

In the expression (5) the first two lines give n1n2g
2K1;2ð0Þ

as it appears in (1). The final line in (5) calculates the phase
space, �, for the fusion products, and the effects of their
mutual Coulomb interaction, in a limit in which their final
energy is exactlyQ and their total momentum exactly zero.

Using g2� ¼ h�vi½Kð0Þ��1 we obtain (1), with the caveat
that we have calculated the final phase space neglect-
ing momentum and energy pass-through from the initial
state. But this is inconsequential in the largeQ limit, which
is for other reasons the domain of applicability
of (5), as noted in Ref. [5] and explicitly demonstrated in
an example below.

The best calculation to date of the correlator K1;2, im-

plicit in the first factors of (5), appears to be that by
Militzer and Pollack [2]. Using expð��HÞ ¼
½expð��H=N1Þ�N1 in (5), when N1 is sufficiently large,
they use perturbation theory for the individual factors, each
effectively now at high temperature, N1T. This is an ex-
pensive calculation because N and N1 have to be fairly

large, and between each of the N1 factors one must inte-
grate over the full manifold of r01; r

0
2;R

0
1 . . .R

0
N .

To apply the same technique to the complete formula-
tion, (4), we would face the additional complications of the
time and space integrations, requiring a computation for
each point r, t that is the equivalent of the entire calculation
of (5). Furthermore, as it stands, a calculation of (4) at even
one point r, t is out of the question because of the oscillat-
ing integrands. To make progress, we look at an approxi-
mate form of the last bracket hi in (4) for small values of t.
For simplicity we take ions I2 and I4 to be infinitely
massive and to be situated at the origin; we can then
eliminate their coordinates altogether, and also eliminate
all mention of the center of mass position, r, in (4). In the
last bracket hi in (4) where the coupling is to the outgoing
ions numbers 3 and 4 we make the further simplification in
the factor relating to the fusion products,

h0je�itðHplþH3;4þHcÞj0i � �h0je�itH3;4 j0i; (6)

where

� ¼ 1� itHpl � itðe3 þ e4Þ�ð0Þ: (7)

Here � is an operator in the plasma space, with the Ri

indices now suppressed. The label 0 in the kets refers only
to the position of I1. In (7), �ðrÞ is the operator for the
electric potential of the plasma, which enters in the cou-
pling term of the I3, I4 system to the plasma, HC ¼
e3�ðr3Þ þ e4�ð0Þ. Commutators that have been neglected
in writing (6) in the above form give terms of order t2 and
higher, and would give terms of higher order in Q�1 than
those that we estimate below.
From (4) the rate is now

w ¼
Z 1

�1
dteiQtFðtÞGðtÞ; (8)

where

FðtÞ ¼ CTrpl½h0je�ð��itÞH�j0i�; (9)

with the trace performed in the plasma space.G is given by

GðtÞ ¼
Z dq0

ð2�Þ3 e
�iðq2=2MÞðt�i�Þj�q0 ð0Þj2

� i�3=2ðt� i�Þ�3=2

�
M

2�

�
3=2

: (10)

In (10),�q0 ð0Þ is the Coulomb wave function for asymp-

totic momentum q0, evaluated at the origin. In the second
line we have discarded the Coulomb interaction between I3
and I4. The function GðtÞ is analytic in the upper half t
plane except for the branch point at i�; note that this
singularity comes from the high q2 behavior of the inte-
grand in (10) and should have the same form when we
restore the Coulomb force between the final particles. A
similar analysis of FðtÞ, leaving the plasma out entirely,

would give a structure with a singular factor ðtþ i�Þ�3=2.
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We assume that this analytic structure persists in the pres-
ence of the plasma.

Then defining the cut in the t�1=2 function in (9) to run

from i� to i1, and that in ðtþ i�Þ�3=2 in F to run from
�i� to �i1, we deform the t integration contour to run
from i1� � to 0 to i1þ � and replace it with a simple
integral of the discontinuity and a real integration variable,
�, ending with

w ¼ i�3=2
Z 1

�1
dtFðtÞeiQtð2�MÞ3=2ðt� i�Þ�3=2

¼ 2i�3=2
Z 1

�1
dt

d

dt
½eiQtFðtÞ�ð2�MÞ3=2ðt� i�Þ�1=2

¼ �21=2
�
M

�

�
3=2 Z 1

0
d���1=2 d

d�
½e�Q�Fði�Þ�; (11)

the integration by parts before transforming the contour
being required in order to avoid a nonintegrable singularity
at t ¼ 0 in the final form.

The rate corrections of order Q�1 are now calculated
from the linear term in the expansion of FðtÞ in powers of t.
From (9) and (7) we obtain just

FðtÞ ¼ CTrpl½h0je��H½1þ itH1;2�j0i1;2�; (12)

the terms with t�ð0Þ having been canceled through con-
servation of charge, and the terms with tHpl having been

canceled as well. The term with unity in the final bracket
gives the rate ws of (5). We estimate the contribution �F of
the linear term in t the ‘‘basically classical’’ approxima-
tion, in which plasma coordinates are eliminated in favor
of an effective Hamiltonian Heff ¼ KEþ Veff ,

�Fði�Þ ¼ n1n2g
2��1�h0je��HeffH1;2j0i; (13)

where � ¼ R
drhrje��Heff jri. We evaluate (13) taking a

minimal modification of the potential due to the plasma,
following Ref. [7],

�H � Heff �H1;2 � ����1½1� ðr=2aÞ2�; (14)

where a is the average interparticle spacing and � the
classical plasma coupling strength. We evaluate using

h0jH1;2e
��Heff j0i ¼ �h0j

�
@

@�
þ �H

�
e��Heff j0i (15)

and

e��Heff � e�S0e	; (16)

where S0 ¼ ½27�2�MðZeÞ4=4@2�1=3 and 	 ¼ ½��
ð45�3Þ=ð32S20Þ�, as in Eq. (28) of Ref. [7]. Here � ¼
Ze2�=a where a ¼ ð3=4�nIÞ1=3. In the second term in
(15) we take �H at the time averaged (imaginary) time �r
[Eq. (13) in Ref. [7] ]. We obtain

�w

ws

¼ �@S0
@�

Q�1 � 129

64

�3

S20�Q
: (17)

The first term on the right-hand side of (17) simply
adjusts the phase space for the outgoing particles by adding
an energy on the order of the Gamow energy to the final
state [note the discussion of energetics above, after (5)].
The remaining term comes specifically from the r2 term in
the effective potential. [The contributions from the r inde-
pendent modification canceled, using ð@=@�Þ� ¼ �=�.]
This r2 term gives a fractional correction � 0:4 MeV=Q
for the case of the extreme conditions of 12Cþ 12C at a
temperature of 108 K and a density of 1010 gc�3.
A correction of the above magnitude does not neces-

sarily create a problem for, say, the conventional calcula-
tion of 12Cþ 12C ! 23Naþ p where the Q value is about
2 MeV, and where the applications care about factors of ten
and not about 20% corrections. But the fractional correc-
tion is much larger than T=Q. The next logical step would
be to expand the right-hand hi in (4) in an infinite series of
operators in the plasma space, of which (12) displays the
first two terms. Our conjecture is that the contour distortion
can then be applied to give individual terms, each of which
could be calculated with the path integral method.
We can get complementary information from perturba-

tive calculations in a system in which the expansion in
powers of Q�1 is not applicable. We consider a reaction
I1 þ I2 ! I3, where I3 is a narrow resonance, and where
the decay of the resonance is nearly all into channels other
than the entrance channel. The formalism above is appli-
cable simply by eliminating every reference to ion number
4 in every equation. The local interaction, (2), removing

the c y
4 factor, perfectly describes the limit in which the

Breit-Wigner formula, with Coulomb removed, becomes a
constant times a delta function in energy. As context we
mention the possible application to 12Cþ 12C fusion at
temperatures in the range of a few times 108 K, where the
magnitude ofQ, which is negative in this case, is chosen to
be close to the Gamow peak for the fusion reaction, result-
ing in enhancements to the rate [8–10].
We consider only the order in which there are two

interactions of the distinguished ions I1, I2, I3 with the
plasma; the superficial order of w in the coupling parame-
ter is e4 but the long-range part of the Coulomb force
reduces the order of the leading term to e3. For these terms
the dimensionless strength parameter is 
1 ¼ e2Z2�D with
�2
D ¼ 4�nIZ

2�. To calculate we introduce an interaction
representation in which the ‘‘interaction’’ Hamiltonian is
Hc, the coupling of I1, I2, I3 to the plasma particles, and the
unperturbed Hamiltonian,H0 ¼ H �Hc. The calculations
are fairly standard, with the replacement, e.g., within the
first hi in (4),

e�Hð��itÞ ¼ e�H0ð��itÞ exp
�
i
Z t

�i�
dt0HI

cðt0Þ
�
þ
; (18)

where the final subscript indicates time ordering along the
path �i� to 0 to t. The perturbation terms will come from
the first and second terms in the expansions of the final
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exponentials of (18) and its (anti-time-ordered) counterpart
for the second hi in (4). To distinguish the source of the
terms that follow we introduce independent charges of the
fusing particles and the fusion products, e1, e2, e3, taking
e1 ¼ e2 ¼ eZ ¼ e3=2 at the end of the calculation. When
we calculate just the terms of order e3 in (4) we obtain

w ¼ g2n1n2�
�1

Z 1

�1
dt½1� ��1�DJðtÞ�eiQt

Z
dr

� h0; 0je�H1;2ð��itÞjr; ri1;2hrje�iH3tj0; 0i3; (19)

where

JðtÞ ¼ ðe1 þ e2Þ2
�
t2

2
� �2

2
þ i�t

�
þ e23

t2

2
� ðe1

þ e2Þe3ðt2 þ i�tÞ: (20)

When charge conservation is imposed, the individually
time dependent terms in (20) add up to �ðe1 þ
e2Þ2�2=2, and we obtain the perturbative change in rate,

�w ¼ ð1=2Þðe1 þ e2Þ2�D�w
ð0Þ; (21)

where however the e21 and e22 terms are to be dropped
because they are exactly compensated by the changes in
chemical potential required to keep the number densities of
the respective species constant, as shown explicitly in
Ref. [5]. In the end we obtain just the Salpeter [11] cor-

rection (for Z1 ¼ Z2 ¼ Z), �w ¼ 
1w
ð0Þ. Using instead

just the term in (20) in which the plasma couples only to
the incoming ions would produce a spurious addition of
relative order ð�QÞ�1 to our earlier largeQ expansion, and
more damaging spurious effects in a resonance case (where
we cannot use the Q�1 expansion).

Deriving the correct Salpeter result from a wrong equa-
tion, (5), can lead one to believe that there exist further
corrections of order 
1 coming from the coupling of the
fusion products to the plasma. Other works, e.g.,
Refs. [9,12], have combined a standard screening enhance-
ment, of order e�, with a resonance energy shift, of order
�=�. In our weak coupling framework, including the latter
would be incorrect, since the fractional correction to order

1 is given completely by (21). Thus it appears to be
incorrect in the strongly coupled case as well, though the
issue deserves further scrutiny.

We have calculated the residual, noninfrared divergent,
terms of order e4 in the perturbation expansion for the
resonance production case coming from two interactions
of the plasma with the final resonance. We find a fractional

correction of a few times 
2L½Q=EGamow� where 
2 ¼
e4Z3

@�5=2nIM
�1=2 and the function L is of order unity

when Q is of order EGamow. Thus the correction is super-
ficially of order @ while the order 
1 correction of (21) is

classical. However, there is also implicit @ dependence in
EGamow. For example, in 12Cþ 12C at a temperature of
108 K , this correction would be 100% for densities greater

than about 108 gc�3. The classical coupling � (or 
2=3
1 ) has

become strong for even lower density, so this perturbative
estimate of a quantum effect must be regarded with suspi-
cion, and is of no value to phenomenology. But it is
worrisome that the usual picture does not in any way
include the physics of these terms, especially when applied
at 100 times the density at which they appear to become
important.
The most important new results in this Letter are the

presentation of the basic governing Eq. (4) and the dem-
onstration that the real time dependence therein can lead to
big changes when Q is not sufficiently large. It is note-
worthy that, even when we evaluated the correction using
the classical potential, the time dependence in the frame-
work combines with the quantum effects in the short
distance tunneling region to produce significant changes.
The last, perturbative, parts of the Letter serve as a further
caveat with respect to using the existing lore whenQ is not
large.
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