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We define matrix product states in the continuum limit, without any reference to an underlying lattice

parameter. This allows us to extend the density matrix renormalization group and variational matrix

product state formalism to quantum field theories and continuum models in 1 spatial dimension. We

illustrate our procedure with the Lieb-Liniger model.
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The numerical renormalization group (NRG) of Wilson
[1] and the density matrix renormalization group (DMRG)
of White [2] revolutionized the way strongly correlated
quantum systems can be simulated and understood. The
applicability of those approaches has been better under-
stood during the last 5 years by rephrasing those methods
in terms of matrix products states (MPS) [3,4]; the success
of NRG and DMRG relies on the fact that thoseMPS give a
very accurate description of the correlations and entangle-
ment present in ground states of 1D quantum spin systems
[5,6]. This insight led to several important extensions of
DMRG, as MPS can also be used to describe dynamical
properties [7] and can be used as a stepping stone for
constructing higher-dimensional analogues known as pro-
jected entangled pair states (PEPS) [8].

In this Letter, we show how this formalism of MPS can
be adopted to describe quantum field theories. We will
define a new family of states that we call continuous
MPS (CMPS) that describe field theories in 1 spatial
dimension. We will also show that CMPS can be under-
stood as the continuous limit of standard MPS. Those
CMPS can be used as variational states for finding ground
states of quantum field theories, as well as to describe real-
time dynamical features. Just as MPS capture the entan-
glement structure of low-energy states of quantum spin
systems, the entanglement structure of CMPS is tailored to
describe the low-energy states of quantum field theories.
We will illustrate this with simulations on the Lieb-Liniger
model [9] which describes a system of bosons in one
dimension interacting via a delta potential; using CMPS
with very few variational parameters and hence a small
amount of entanglement, the ground state energy density is
already reproduced with extremely good precision.Wewill
also show how one can calculate other interesting physical
quantities, like correlation functions or the static structure
factor.

Let us next define the CMPS, which is most easily done
in the formalism of second quantization. Wewill consider a
one-dimensional system of bosons or fermions on a ring of

length L and associated field operators ĉ ðxÞwith canonical
commutation relations, ½ĉ ðxÞ; ĉ ðyÞy�� ¼ �ðx� yÞ with

0 � x, y � L space coordinates. A CMPS is defined as

j�i ¼ Traux½P e
R

L

0
dx½QðxÞ�1þRðxÞ�ĉ yðxÞ��j�i; (1)

with QðxÞ, RðxÞ position dependent matrices of dimension
D�D that act on a D-dimensional auxiliary system,
P exp the notation for the path-ordered exponential,
Traux the trace over the auxiliary system, and j�i the

vacuum state [ĉ ðxÞj�i ¼ 0]. A translational invariant
state can easily be obtained by choosing QðxÞ and RðxÞ
independent of x, and a system with open boundary con-
ditions can be obtained by replacing the Traux by a left and
right multiplication of the auxiliary system with a row and
a column vector, respectively.
As we will show later, CMPS appear naturally as a

continuous limit of MPS. Thus, they automatically inherit
all the properties of MPS, like the fact that the entangle-
ment entropy of a contiguous block of bosons is bounded
above by 2log2ðDÞ. In general, the state j�i is a superpo-
sition of states with a different particle number. For the
case of fermions, it is easy to enforce an occupation
number with a fixed parity by introducing a Z2 symmetry
by choosing Q and R block diagonal:

QðxÞ ¼ Q0ðxÞ 0
0 Q1ðxÞ

� �
; RðxÞ ¼ 0 R0ðxÞ

R1ðxÞ 0

� �
:

(2)

As a consequence, expectation values of the form
hc ðxÞyc ðyÞi can be calculated without the need for intro-
ducing string-order-like operators.
To get some intuition about the structure of CMPS, it is

instructive to write down explicitly

j�i¼X1
n¼0

Z
0<x1<...<xn<L

dx1 . . .dxn�n ĉ
yðx1Þ . . . ĉ yðxnÞj�i;

(3)

where

�n ¼ Traux½uQðx1; 0ÞRuQðx2; x1ÞR . . .RuQðL; xnÞ� (4)

and uQðy; xÞ ¼ P exp½Ry
x QðxÞdx�. One can interpret uQ as
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a free propagator, while R can be understood as a scattering
matrix that creates a physical particle. In general, the MPS
formalism can indeed be rephrased as a representation of
scattering events that happen between the vacuum of the
interacting many-body state and the auxiliary system.

With the help of this definition, it is straightforward to
express the norm and expectation value of operators in
terms of the matrices R and Q. For the sake of simplicity,
we will consider a bosonic system and assume translational
invariance. Note that for inhomogeneous systems one can
proceed in a similar way. Using the commutation relations
of the field operators one readily finds h�j�i ¼ TrðeTLÞ
and

hĉ ðxÞy ĉ ðxÞi ¼ Tr½eTLðR � �RÞ�;
hĉ ðxÞy ĉ ð0Þy ĉ ð0Þĉ ðxÞi ¼ Tr½eTðL�xÞðR � �RÞeTxðR � �RÞ�;

hĉ ðxÞy
�
� d2

dx2

�
ĉ ðxÞi ¼ Tr½eTLð½Q;R� � ½ �Q; �R�Þ�; (5)

where T ¼ Q � 1þ 1 � �Qþ R � �R (the bar indicates
complex conjugation). The state j�i is invariant under
the ’’gauge’’ transformation Q ! XQX�1, R ! XRX�1

for arbitrary invertible X, and a shift Q ! Qþ �1. This
allows us to fix a gauge by imposing QþQy þ RyR ¼ 0,
so that we can write

Q ¼ �1
2R

yR� iH (6)

where H ¼ Hy and RyR is diagonal. Making the trans-
formation X � �Yja; bi ! Xjaih �bjYy, T is transformed into
a superoperator ~T (mapping matrices into matrices), and

we obtain that the auxiliary system �ðxÞ :¼ e
~Tx� satisfies a

master equation in the Lindblad form

d

dx
�ðxÞ ¼ �i½ ~H;�ðxÞ� þ R�ðxÞRy � 1

2
½RyR; �ðxÞ�þ:

(7)

As a consequence, all eigenvalues of ~T have a nonpositive
real part, which implies that all of the above quantities are
well behaved in the thermodynamical limit L ! 1. In the
generic case, the master equation will have a unique steady
state �ss � 0, which can be chosen with unit trace. In such
a case, the above expressions considerably simplify in the
thermodynamic limit, since h�j�i ¼ Trð�ssÞ ¼ 1,

hĉ ðxÞy ĉ ðxÞi ¼ Tr½RyR�ss�;
hĉ ð0Þy ĉ ðxÞy ĉ ðxÞĉ ð0Þi ¼ Tr½ðRe ~TxðR�ssR

yÞRy�;

hĉ ðxÞy
�
� d2

dx2

�
ĉ ðxÞi ¼ Tr½ð½Q;R�Þy½Q;R��ss�;

(8)

Other quantities can be similarly calculated. Note that
observables defined as Fourier transforms of correlation
functions, like the static structure factor, can be directly
calculated in terms of the superoperator ðT � ikÞ�1.

In the case of a system with open boundary conditions,
the eigenvalues of the matrix �ðxÞ would exactly corre-
spond to the squares of the Schmidt coefficients when
considering a bipartition at site x. This can in its turn be
used to calculate the entanglement entropy of the reduced
density matrices defined on given intervals. Just as in the
case of quantum spin systems, the justification for using
CMPS should stem from the fact that an area law is
satisfied for this entanglement entropy, eventually with
logarithmic corrections in the case of critical systems. It
seems indeed possible to generalize the work of Hastings
[6] (proving the area law for one-dimensional gapped spin
systems) to the current continuous setting [10].
Let us next show how these continuous MPS can be

understood as a limit of a family of MPS. For simplicity,
we will consider a translational invariant system of bosons
on a ring of length L; an identical construction works for
the fermionic case. We define a family of translational
invariant MPS of N ¼ L=� modes on a discretized lattice
with lattice parameter � with modes ai that obey the

commutation relations ½âyi ; âj� ¼ �ij:

j��i ¼
X

i1���iN
Tr½Ai1 � � �AiN �ðĉ y

1 Þi1 � � � ðĉ y
NÞiN j�i; (9)

A0 ¼ 1þ �Q; (10)

A1 ¼ �R; (11)

An ¼ �nRn=n!; (12)

ĉ i ¼ âiffiffiffi
�

p : (13)

Again, j�i is the pseudovacuum on which the operators
âi act (âij�i ¼ 0), and we use the convention that

ðĉ y
k Þ0 ¼ 1. The operators ĉ i are defined as rescaled anni-

hilation operators and those become the field operators in

the limit � ! 0: ½ĉ i; ĉ
y
j � ¼ �ij

� ) ½ĉ ðxÞ; ĉ ðyÞy� ¼ �ðx�
yÞ. Q and R are D�D matrices, and the scaling of the
matrices Ai as a function of � has been chosen such that this
limit is well defined. The matrices Ak for higher k have
been determined by the requirement that, e.g., a doubly
occupied site yields the same physics as 2 bosons on 2
neighboring sites in the limit � ! 0. With this convention,
the continuum limit of this MPS is equivalent to the
continuous MPS defined before.
It can be checked that all divergencies in 1=� cancel

each other, such as occurring in the case of calculating the
kinetic energy

Ekin ¼ Lh�j
�
ĉ y

iþ1 � ĉ y
i

�

��
ĉ iþ1 � ĉ i

�

�
j�i: (14)

For the case of bosons, the cancellation of the divergent
terms 1=�2 and 1=� can easily be proven by expanding
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X
�;�0;�;�0

A�A� � �A�0 �A�0
;

h�jc �0
iþ1c

�0
i

�
ĉ y

iþ1 � ĉ y
i

�

��
ĉ iþ1 � ĉ i

�

�
c y�

i c y�
iþ1j�i

(15)

as a series in �; the term ½Q;R� � ½ �Q; �R� is independent of
� and is the only term that survives. In the case of fermions,
the same calculation leads to the requirement R2 ¼ 0
which has to be imposed such that the divergencies cancel.

Let us next illustrate how these continuous MPS can be
used as a variational ansatz for strongly correlated continu-
ous theories by applying them on the Lieb-Liniger model
[9]. The Lieb-Liniger Hamiltonian describes (nonrelativ-
istic) bosons in 1 spatial dimension interacting via a con-
tact potential:

H ¼
Z þ1

�1
dx

�
dĉ yðxÞ
dx

dĉ ðxÞ
dx

þ cĉ yðxÞĉ yðxÞĉ ðxÞĉ ðxÞ
�
: (16)

In the limit L ! 1, the energy density in this system can
be expressed as E=L ¼ �3eðc=�Þ with � the density and
eðcÞ the energy density of the system at � ¼ 1. This scaling
can also readily be understood from the continuous MPS
ansatz: for L ! 1, eLT remains invariant under the scaling
transformation Q ! xQ and R ! ffiffiffi

x
p

R. Since density, ki-
netic, and interaction energy behave like R� R, ½Q;R� �
½Q;R�, and R2 � R2, respectively, we have that under this
transformation � ! x�, Ekin ! x3Ekin and Eint ! x2Eint.
Thus, Ekinð�Þ þ 2cEintð�Þ ¼ �3ðEkinð� ¼ 1Þ þ
c=�Eintð� ¼ 1ÞÞ giving the above scaling. The energy
density eðcÞ can be determined in terms of the Bethe ansatz
[9], whereas other quantities like correlation functions
have been calculated using Monte Carlo methods
Refs. [11,12].

We did a variational optimization of CMPS as a function
of the scaling parameter c (i.e., we chose � ¼ 1). We
carried out a simple gradient minimization of the energy
density as a function of the matrices A ¼ i ~H and R ¼ OD,
where A is antisymmetric, O orthogonal, and D diagonal.
In Fig. 1 we have plotted eðcÞ for different values of the
bond dimension D, as well as the one obtained by Bethe
ansatz. The inset shows the relative error in the energy as a
function of D, which seems to indicate an exponential
dependence. As a comparison, for c ¼ 2 the Bethe ansatz
gives e ¼ 1:0504, whereas we obtain e ¼ 1:1241, 1.0618,
1.0531, 1.0515, 1.0512, and 1.0508 for D ¼ 2; 4; . . . ; 12.
In Fig. 2 we have determined the one-particle and density-
density correlation functions. With little numerical effort
we obtain results which are comparable to those of exact
Monte Carlo methods. By using more sophisticated tech-
niques to perform the minimization we believe that much
more precise results can be obtained, and thus CMPS can

be viewed as an alternative to Bethe ansatz methods
[13,14]. Importantly, the CMPS method does not rely on
the fact that the model is integrable, and, in analogy to
DMRG, the CMPS has the potential of working equally
well for nonintregrable models.
Let us next comment on how to do the calculations in the

case the translational invariance is broken. This is of
central importance for the simulation of atomic gasses in
a nonhomogeneous potential such as occurring in optical
lattices; the present ansatz allows us to deal with the full
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FIG. 1 (color online). Energy density as a function of the
interaction parameter c for different values of D ¼ 2, 4, 6, 8
(from top to bottom). The result for D ¼ 8 is indistinguishable
from the one given by the Bethe Ansatz. The inset shows the
relative error �E ¼ ðe� eBetheÞ=eBetheÞ (where EBethe is the
energy given by the Bethe Ansatz solution), as a function of D
for c ¼ 0:2, 2, 20, and 200 (x, *, þ, and o, respectively). We
show the results for up to D ¼ 10; the saturation of the accuracy
with D ¼ 10 is due to insufficient convergence of the results.

5
x

(b)

10
0.1

1

01
0

1

(a)

〉
〈

0
n

x
n

x

x
〉

〈
0

FIG. 2 (color online). (a) Off-diagonal elements of the one-
particle reduced density operator as a function of the distance in
a logarithmic scale for (from top to bottom): c ¼ 0:2, 2, 20, 200,
and c ¼ 2000. For reference we have also drawn a straight line
with slope ¼ 1=2, which is the slope corresponding to the Tonk-
Girardeau limit (c ! 1). As it can be seen, the slope of the
curves approaches 1=2 as c increases. (b) Two-body density-
density correlation function for the same values of c (in the left,
from bottom to top). For large c one can observe the Friedel
oscillations corresponding to the Tonks-Girardeau limit. All the
results have been calculated with D ¼ 14.

PRL 104, 190405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
14 MAY 2010

190405-3



Hamiltonian as opposed to effective Hamiltonians such as
the Bose-Hubbard model which typically ignore the poten-
tially important effects from the higher Hubbard bands. In
that case, one should expand the functionalsQðxÞ, RðxÞ as a
series, in such a way that a discrete amount of parameters
characterize the state:

QðxÞ ¼ Xp
k¼0

fpðxÞQp; RðxÞ ¼ Xp
k¼0

fpðxÞRp: (17)

Here the functions fpðxÞ can be chosen to correspond to

harmonic Fourier functions in the case of a periodic lattice
or by localized functions in the case of, e.g., a harmonic
trap. For periodic lattices, this leads to a Bloch-like ansatz,
and it is possible to define eigenfunctions of the site-
dependent Lindblad operator in terms of a similar Fourier
series. Similarly, it is possible to incorporate the MPS
techniques for real-time evolution. In this case, the
Qðx; tÞ and Rðx; tÞ become both functions of space and
time, and it is possible to write down coupled differential
equations that describe the evolution.

Other extensions include the simulation of systems with
different types of fermions and/or bosons. This is relevant
for the case of the Hubbard type models, where there are 2
types of fermions per site or in the case of mixtures. In this
case, the CMPS ansatz becomes

Tr aux

�
P exp

�Z L

0
QðxÞ � 1þX

�

R�ðxÞ � ĉ y
�ðxÞ

��
j�i;

(18)

where the c � are field operators corresponding to different
spins (or species). More local terms can be added in the
exponential, such asX

��

S��ðxÞ � ĉ y
�ðxÞĉ y

�ðxÞ þ S0��ðxÞ � ĉ �ðxÞĉ y
�ðxÞ:

(19)

Besides that, it is possible to extend this formalism to two-
dimensional continuum systems using the formalism of
PEPS [8]. In that case, the auxiliary bond dimension has
to be interpreted as representing an auxiliary field, and the
judicious choice of tensors Q and R allows to develop a
consistent formalism for describing 2þ 1 dimensional
field theories [10].

In conclusion, we have introduced a new family of
states, the CMPS, for quantum field models in 1 spatial
dimension. They correspond to the continuum limit of the
MPS. We have shown how one can efficiently determine
expectation values of different observables, so that they can
be used to approximate ground state of such systems. There

are many possible extensions of the present work. On the
one hand, one can apply the same techniques as with MPS
to describe mixed states or systems at finite temperature, as
well as higher dimensions [4]. On the other hand, it would
be interesting to explore new methods for finding the
matrices Q and R variationally with high bond dimension,
as well as to study nontranslationally invariant systems.
Beyond that, it would also be interesting to substitute those
matrices by operators acting on an infinite-dimensional
Hilbert space as in [15] in order to capture critical phe-
nomena and to study relativistic quantum field theories.
Finally, the CMPS formalism allows us to construct
Hamiltonians whose exact ground states are known, which
leads to new solvable field theories [10].
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