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The features of propagation of intense waves are of great interest for theory and experiment in

electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special

importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find

a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution

of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear

medium without dispersion and give examples of the obtained solutions that describe propagation of

cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic

oscillations in a cylindrical cavity resonator filled with such a medium.

DOI: 10.1103/PhysRevLett.104.190404 PACS numbers: 03.50.De, 02.30.Jr

Wave propagation in nonlinear media is a fundamental
and wide-ranging problem in physics [1,2]. The possible
self-steepening and formation of shock discontinuities in
large-amplitude pressure waves is well known in fluid
mechanics, being a typical nonlinear phenomenon. A simi-
lar phenomenon (formation of surfaces of discontinuity for
the electric and magnetic fields) can also be observed
during propagation of intense electromagnetic waves in
certain media, and there is an elegant physical analogy
between the fluid mechanics and electrodynamics in this
case. The discovery of materials with a well-pronounced
nonlinearity of electromagnetic properties (for example,
ferrites and ferroelectrics) has attracted considerable atten-
tion to essentially nonlinear electromagnetic phenomena,
and some important advances have been made [3,4].
Further theoretical progress, however, has met serious
difficulties because such phenomena cannot be described
satisfactorily by perturbation theory, and rigorous solutions
of field equations are required in order to get theoretical
predictions. In view of the above, finding new, physically
important exact solutions of nonlinear partial differential
equations (PDEs) that describe the behavior of waves in
nonlinear media is very topical [5,6]. In most papers on the
subject, plane nonlinear waves are considered. At the same
time, features of propagation of nonlinear cylindrical and
spherical waves, as well as the properties of the related
nonlinear PDEs in the corresponding curvilinear coordi-
nates, remain poorly studied.

In what follows, we present a new method for construct-
ing exact axisymmetric solutions of the Maxwell equations
in a nonlinear nondispersive medium. It is assumed that the
medium considered lacks a center of inversion and the
dependence of the electric displacement on the electric
field can be approximated by an exponential function.

Consider electromagnetic fields in a loss-free nonmag-
netic medium. With a view to analyzing uniaxial crystals,
we assume that the medium possesses an axis of symmetry,
hereafter taken as the z axis of a cylindrical coordinate
system (r, �, z). If the fields are independent of � and z,

the Maxwell equations admit solutions in which only the
Ez and H� components are nonzero (E waves with respect

to the symmetry axis). Restricting ourselves to considera-
tion only of such solutions, we will also neglect dispersion
effects and suppose that the relation of the displacementDz

to the electric field Ez is local in space and time. Denoting
Ezðr; tÞ, Dzðr; tÞ, and H�ðr; tÞ as E, D, and H, respectively,

we can write equations for these functions in the form

@rHþ r�1H ¼ "ðEÞ@tE; @rE ¼ �0@tH; (1)

where "ðEÞ ¼ dD=dE. System (1) can be reduced to the
nonlinear wave equation

@2rEþ r�1@rE ¼ �0@tð"ðEÞ@tEÞ: (2)

It will be shown below that system (1) and Eq. (2) are
integrated exactly if the function "ðEÞ is chosen in the form

"ðEÞ ¼ �0"1 expð�EÞ; (3)

where "1 and � are certain constants. The longitudinal
component of the electric displacement can be represented
as D ¼ D0 þ ��1�0"1½expð�EÞ � 1� ¼ D0 þ �0"1ðEþ
�E2=2þ . . .Þ, where D0 ¼ DðE ¼ 0Þ ¼ const. It is clear
that function (3), as any theoretical model of nonlinearity,
cannot be used in the entire range 0< jEj<1. However,
for moderately small electric fields observed in actual
experiments (j�Ej � 1), the chosen dependence DðEÞ
correctly describes dielectric properties of certain media
with accuracy up to terms of order E2 inclusively. Since
even powers of E are present in the series expansion of D,
the medium for which the dependence "ðEÞ is approxi-
mated by function (3) does not possess a center of inversion
[7]. This is inherent in, e.g., uniaxial pyroelectric and
ferroelectric crystals, provided that the z axis is aligned
with the crystallographic symmetry axis. The case where
D0 � 0 corresponds to the presence of spontaneous polar-
ization. The value of � can be obtained, for example, in
experiments on microwave frequency doubling in ferro-
electric crystals [8,9]. Along with the medium properties,
another factor leading to lack of a center of inversion can
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be the presence of a strong external electric field [7]. For

example, let an isotropic medium in which D ¼ �0"1Ez þ
�ð3ÞE3

z , where �ð3Þ ¼ const [4], be placed in a uniform
static electric field E ¼ E0ẑ0. Representing the total field
as Ez ¼ E0 þ E, we obtain the term proportional to E2 in
the expansion of D. Thus, with appropriately chosen con-
stants D0, "1, and �, formula (3) correctly describes di-
electric properties of media lacking a center of inversion in
the case of weak nonlinearity where we can restrict our-
selves to the quadratic (in E) correction term to the linear
dependence of D on E.

Note that the forthcoming results can also be related to
magnetic media lacking a center of inversion, such as
ferromagnetic crystals. To this end, one should consi-
der H waves, for which Hz � 0 and E� � 0, and put

dBz=dHz ¼ �0�1 expð�HzÞ.
Let us use the following ansatz in system (1):

E ¼ ��1ðu� 2�Þ; H ¼ "1=21 ðZ0�Þ�1e��ðv� 2�Þ;
(4)

where � ¼ lnðr=r0Þ, � ¼ tð�0"1�0Þ�1=2=r0, Z0 ¼
ð�0=�0Þ1=2, and r0 is an arbitrary constant with the dimen-
sion of length. In the new variables, we have

@�u ¼ @�v; @�v ¼ eu@�u: (5)

System (5) has particular solutions in which one of the
functions u and v can be expressed in terms of the other:

u ¼ Fð�� �e�u=2Þ; v ¼ �2ðeu=2 � 1Þ: (6)

Here, F is an arbitrary differentiable function. Similar
solutions, which are analogous to the Riemann solutions
in fluid mechanics, have been obtained in [3]. However, it
can easily be verified that ansatz (4) does not make it
possible to arrive at physically admissible solutions for
Ez and H� on the basis of (6) in our case [10], and some-

what another approach should be used. The approach is
based on the application of a hodograph transformation for
seeking solutions for which the Jacobian Dðu; vÞ=Dð�;�Þ
is nonzero. Using u and v as independent variables, we
obtain from (5) the system of linear equations

@v� ¼ @u�; @u� ¼ eu@v�: (7)

Excluding � from (7) yields the equation @2u� ¼ eu@2v�,

which, by making the replacement w ¼ 2eu=2, reduces to

@2w�þ w�1@w� ¼ @2v�: (8)

A remarkable symmetry property of system (1) with ex-
ponential nonlinearity is that it is reduced to a linear wave
equation of form (8) for cylindrical waves by application of
the above-described substitutions and the hodograph trans-
formation. However, initial and boundary conditions for
the fields E andH in the new variables � and� can become
much more complicated. This may cause the necessity of
numerically solving even linear equation (8). Nevertheless,
it is possible to propose a comparatively simple analytical

method which permits one to find physically admissible
exact solutions of system (1). The idea of the method
consists in the following. At first, one should find an
analytical solution to the problem of propagation of cylin-
drical E waves in a medium with the linear dependence
Dz ¼ D0 þ �0"1Ez. Assume that such a solution is known
and we have the functions E and H satisfying the linear
field equations and the specified initial and boundary con-
ditions. The characteristic spatial scale determined by
these conditions for the problem considered will be de-
noted by a. We also introduce the dimensionless variables

	 ¼ r=a and 
 ¼ tð�0"1�0Þ�1=2=a. Then it is convenient
to represent the solution of the linear problem in the form

E � Ez ¼ Eð	; 
Þ; H � H� ¼ Z�1
0 "1=21 H ð	; 
Þ;

(9)

where the functions E and H satisfy the system

@	H þ 	�1H ¼ @
E; @	E ¼ @
H : (10)

We write the quantities � and � as

� ¼ C1Eðw; vÞ þ ln
w

2
; � ¼ C1

2
wH ðw; vÞ þ v

2
;

(11)

where C1 is an arbitrary constant. It can easily be verified
by straightforward differentiation that functions (11) sat-
isfy system (7). Using formulas (4), we can pass to the
initially used quantities r, t, E, andH in (11). Putting C1 ¼
��=2 and r0 ¼ 2a ensures that the resulting solution will
go into solution (9) in the linear case. Bearing this in mind,
after some simple algebra we obtain

E ¼ Eð	e�E=2; 
þ �Z0	H=ð2 ffiffiffiffiffi

"1
p ÞÞ;

H ¼ "1=21

Z0

e�E=2H ð	e�E=2; 
þ �Z0	H=ð2 ffiffiffiffiffi

"1
p ÞÞ:

(12)

These expressions give an exact solution of system (1) in
implicit form and describe axisymmetric electromagnetic
fields in the nonlinear medium considered. For the known
functions E and H , which are determined by solving the
linear problem, and given values of 	 and 
, formulas (12)
represent a system of two transcendental equations in E
and H. In the limit � ! 0, the solution obtained goes into
solution (9) of the linear problem, but, generally, corre-
sponds to somewhat different initial or boundary condi-
tions compared with those satisfied by functions (9). Let us
now discuss some particular examples to better understand
the essence of this method.
Initial value problem.—Let the initial field distributions

Ezjt¼0 � Eð	; 0Þ ¼ �ð1þ 	2Þ�3=2; H�jt¼0 � 0;

(13)

where � is a certain constant, be specified in a linear
medium with constant dielectric permittivity " ¼ �0"1.
To find Ez and H� for t > 0, we apply the Hankel trans-
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form and obtain a solution of system (10) under initial
conditions (13) as follows:

Eð	; 
Þ ¼ �Refð1� i
Þ½ð1� i
Þ2 þ 	2��3=2g;
H ð	; 
Þ ¼ �	Refi½ð1� i
Þ2 þ 	2��3=2g: (14)

We now write the corresponding exact solution of non-
linear system (1) with "ðEÞ in form (3). Substituting E and
H given by (14) into (12), we have

E ¼ �Refð1� i�Þ½ð1� i�Þ2 þ 	2e�E��3=2g;

H ¼ �"1=21

Z0

e�E	Refi½ð1� i�Þ2 þ 	2e�E��3=2g:
(15)

Hereafter, � ¼ 
þ �Z0	H=ð2 ffiffiffiffiffi

"1
p Þ. Once the solution of

nonlinear equations (1) is found, it is a simple matter to
examine what initial conditions are satisfied by it.
Substituting 
 ¼ 0 into Eqs. (15), we get

E ¼ �½1þ 	2 expð�EÞ��3=2; H � 0: (16)

As a result, the implicit functions Eð	; 
Þ and Hð	; 
Þ
determined by formulas (15) give the exact solution of
the Cauchy problem for system (1) under initial condi-
tions (16).

Figure 1 shows results of numerical calculations of E
and H by formulas (15) in the case where �� ¼ 1 and
"1 ¼ 2. The electric and magnetic fields as functions of the
coordinate 	 are shown by the solid and dashed curves,
respectively, at various times 
. The dotted curve corre-
sponds to the initial distribution (13) of the field E in the
auxiliary linear problem. It is evident that even for a
sufficiently strong nonlinearity (�� ¼ 1), the difference
between the initial conditions (13) and (16) is small.
Figure 1 shows that the wave-profile part for which E=�
increases in the wave propagation direction becomes
steeper with time, thereby exhibiting the so-called self-
steepening. As a result, inflection of the wave profile
occurs at a certain point 	 ¼ 	� at the time instant 
 ¼

�. For 
 > 
�, three different values of both E and H,

which satisfy system (15), correspond to one value of 	, so
that the curves of E and H become ambiguous for a given

. Because of this fact, discontinuities of the wave compo-
nents appear at the inflection point [11], which corresponds
to the formation of a cylindrical shock electromagnetic
wave. Upon appearance of discontinuities, the solution in
form (15) ceases to be suitable.
The appearance of discontinuities of electromagnetic

quantities results from neglecting dispersion. Its influence
leads to that the fields vary continuously under actual
conditions. In this case, by a shock wave one should under-
stand a sufficiently rapid variation in the field components
on a certain moving interval. The thickness of this interval
(shock front) sets so as to enable the polarization of the
medium to switch from one value to the other.
Boundary value problem.—Now consider a cavity reso-

nator, which is a perfectly conducting circular cylinder of
radius a and height L. We assume that the z axis is aligned
with the cavity axis and the perfectly conducting end walls
of the cavity are at z ¼ 0 and z ¼ L. In the case where the
cavity resonator is filled with a linear medium having the
permittivity " ¼ �0"1 ¼ const, E0n0 (TM0n0) modes can
exist in the cavity. The Ez and H� components, which are

nonzero in these modes, are independent of � and z, and
are described by the solutions of system (10) with the
boundary conditions

Ezjr¼a � Eð1; 
Þ ¼ 0; jEzjr¼0j � jEð0; 
Þj<1:

(17)

Such solutions are well known and their derivation can be
found elsewhere [12]. Substituting the functions E andH ,
which describe the E0n0 modes, into Eqs. (12), we obtain
the solution of nonlinear equations (1) in the form

E ¼ AJ0ðn	e
�E=2Þ cosðn�Þ;

H ¼ �AZ�1
0 "1=21 e�E=2J1ðn	e

�E=2Þ sinðn�Þ;
(18)

where Jm is a Bessel function of the first kind of order m,
n is the nth root of the equation J0ðÞ ¼ 0, and A is an
arbitrary amplitude factor. Note that the field E ¼ 0 sat-
isfies the transcendental equations (18) for any 
 if 	 ¼
r=a ¼ 1. Therefore, the boundary conditions (17) remain
valid for the implicit function Eð	; 
Þ defined by Eqs. (18).
Thus, formulas (18) yield an exact solution of the nonlinear
boundary value problem for system (1) under conditions
(17) and describe free electromagnetic oscillations in a
cylindrical cavity filled with a nonlinear medium.
Implicit solutions E and H given by Eqs. (18) and

corresponding to a certain index n are periodic functions

of time t with period Tn ¼ 2�=!n, where !n ¼
nð�0"1�0Þ�1=2a�1 is an eigenfrequency of the E0n0

mode. Along with the fundamental frequency !n for
each n, the Fourier time series expansions of the functions
E andH also contain terms at the multiple frequencies l!n,
where l is an integer. The contribution of harmonics with
l � 2 determines the role of nonlinear effects which mani-

FIG. 1. Radial distributions of the electric field (solid curves)
and magnetic field (dashed curves) at various times 
. The dotted
curve corresponds to Eð	; 0Þ in Eqs. (13).
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fest themselves as deviations of the quantities E and H
from their values corresponding to the E0n0 mode in a
cavity with " ¼ �0"1 ¼ const in the linear case (� ¼ 0).

Let us now turn to results of calculations of the quanti-
ties E andH by formulas (18). Figure 2(a) shows snapshots
of the normalized field components E=A and Z0H=A in the
lowest mode (n ¼ 1 and 1 ’ 2:4) as functions of 	 at
fixed instants of time 
. Figures 2(b) and 2(c) show the
oscillograms of the field components at two points 	 ¼ 0:2
and 	 ¼ 0:7 for n ¼ 1. Similar curves for a mode with n ¼
2 and 2 ’ 5:5 are presented in Fig. 3. Figures 2 and 3 were
plotted for �A ¼ 0:5 and "1 ¼ 2. The presented plots
show that the nonlinear effects become more pronounced
with increasing n and depend significantly on the coordi-
nate 	, i.e., location of the observation point inside the
cavity. For example, the field oscillograms in Fig. 3(b) are
analogous to those in the linear case. However, in Fig. 3(c)
we see that the field E varies at the frequency!2, while the
field H, at the second harmonic 2!2. For the higher modes
with n > n�, where n� is an integer depending on the
parameter �A, the functions Eð	; 
Þ and Hð	; 
Þ deter-
mined by (18) become ambiguous in a certain domain of
values of the variables 	 and 
. Since such behavior is not
physically admissible, one should expect field discontinu-
ities at the ambiguity points. The time dependences Eð
Þ
and Hð
Þ can then be discontinuous (relaxation) oscilla-
tions, and the solutions (18) obtained without allowance
for dispersion become inapplicable. However, it is impor-
tant to emphasize that for weak nonlinearity (j�Aj � 1),
the number n� is large (e.g., n� ¼ 9 for �A ¼ 0:5) and
solutions (18) for n < n� are single-valued continuous
functions of coordinates and time. Because of this fact,
the exact solutions found seem to be of great practical

interest and can be used for analysis of, e.g., ferroelectric
resonators.
In conclusion, we note that the proposed method makes

it possible to easily generate various physically interesting
solutions of nonlinear system (1), starting from the corre-
sponding solutions of linear field equations. Therefore, this
method has significant advantages over the direct numeri-
cal solution of that system.
This work was supported by the RFBR (Project No. 09–

02–00164-a) and the Russian Federal Program ‘‘Kadry.’’

*kud@rf.unn.ru
[1] G. B. Whitham, Linear and Nonlinear Waves (Wiley,

New York, 1974).
[2] M. J. Ablowitz and H. Segur, Solitons and the Inverse

Scattering Transform (SIAM, Philadelphia, 1981).
[3] A. V. Gaponov and G. I. Freidman, Sov. Phys. JETP 9, 675

(1959).
[4] G. Rosen, Phys. Rev. 139, A539 (1965).
[5] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear

Partial Differential Equations (Chapman & Hall/CRC
Press, Boca Raton, 2002).

[6] A. S. Fokas, Phys. Rev. Lett. 96, 190201 (2006).
[7] P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23

(1963).
[8] I. V. Ivanov, Sov. Phys. Usp. 23, 869 (1980).
[9] G. V. Belokopytov, Ferroelectrics 168, 69 (1995).
[10] A. V. Kudrin and E.Yu. Petrov, JETP 110, 537 (2010).
[11] L. D. Landau, E.M. Lifshitz, and L. P. Pitaevskii,

Electrodynamics of Continuous Media (Pergamon,
Oxford, 1984).

[12] J. D. Jackson, Classical Electrodynamics (Wiley,
New York, 1998).

FIG. 3. (a) The same as in Fig. 2(a), but for the n ¼ 2 mode at

1 ¼ �=ð42Þ, 
2 ¼ �=ð22Þ, and 
3 ¼ 5�=ð42Þ. Field oscil-
lograms at (b) 	 ¼ 0:2 and (c) 	 ¼ 0:7.

FIG. 2. (a) Electric and magnetic fields as functions of 	 (solid
and dashed lines, respectively) in the n ¼ 1 mode at times 
1 ¼
�=ð41Þ, 
2 ¼ �=ð21Þ, and 
3 ¼ 5�=ð41Þ. Oscillograms of
the fields at (b) 	 ¼ 0:2 and (c) 	 ¼ 0:7.
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