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We present a large-N theory for the differential conductance, dI=dV, in Kondo systems measured via

scanning tunneling spectroscopy. We demonstrate that quantum interference between tunneling processes

into the conduction band and into the magnetic f-electron states is crucial in determining the experimental

Fano line shape of dI=dV. This allows one to uniquely extract the Kondo coupling and the ratio of the

tunneling amplitudes from the experimental dI=dV curve. Finally, we show that dI=dV directly reflects

the strength of the antiferromagnetic interaction in Kondo lattice systems.
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Recent progress in scanning tunneling spectroscopy
(STS) techniques has made it possible for the first time
to measure the differential conductance, dI=dV, in heavy-
fermion compounds [1]. These materials, whose essential
ingredient is a (Kondo) lattice of magnetic moments that is
coupled to a conduction band [2], exhibit a variety of
puzzling phenomena, ranging from non-Fermi-liquid be-
havior to unconventional superconductivity [3]. Their mi-
croscopic origin likely lies in the competition between an
antiferromagnetic ordering of the magnetic moments and
their screening by conduction electrons [2], though no
theoretical consensus has emerged as yet [4]. STS experi-
ments, by providing insight into the local electronic struc-
ture [1] of heavy-fermion materials, might hold the key to
understanding their complex properties. The theoretical
challenge in the interpretation of the differential conduc-
tance in Kondo lattice systems [5,6], and around single
Kondo impurities [7–13], arises from the quantum inter-
ference between electrons tunneling from the STS tip into
the conduction band and into the magnetic f-electron
states. While dI=dV for a single Kondo impurity has
been successfully described [7–11] using a phenomeno-
logical form derived by Fano [14], a microscopic under-
standing of how the interplay between the strength of the
Kondo coupling, the interaction between the magnetic
moments, the electronic structure of the screening conduc-
tion band, and quantum interference determines the dI=dV
line shape is still lacking.

In this Letter, we address this issue within the framework
of a large-N theory and identify the microscopic origin for
the form of dI=dV not only around single Kondo impuri-
ties but also in Kondo lattice systems.We show that the line
shape and the spatial dependence of dI=dV sensitively
depend on the particle-hole asymmetry of the (screening)
conduction band, as well as the quantum interference
between the two tunneling paths. For a single Kondo
impurity, this sensitivity allows one to uniquely extract
the Kondo coupling, J; the ratio of the tunneling ampli-
tudes into the conduction band and magnetic f-electron
states, tc and tf, respectively; and the impurity spin from

the experimental STS data. In addition, for a Kondo lattice,

the dI=dV line shape provides insight into the strength of
the interaction between the magnetic moments. Because of
quantum interference effects, the differential conductance
is qualitatively different from the local density of states
(LDOS) of either the conduction band or the f-electron
states. However, once the pertinent parameters are ex-
tracted from a theoretical fit to dI=dV, we can predict the
frequency and spatial dependence of the LDOS for both
bands, as well as the electronic correlations between them,
thus providing important insight into the complex elec-
tronic structure of Kondo systems.
We begin by considering the form of dI=dV in a system

containing a single Kondo impurity with Hamiltonian

H ¼ � X
r;r0;�

trr0c
y
r;�cr0;� þ JSK

R � scR; (1)

where trr0 is the fermionic hopping element between sites r

and r0 of the conduction band, cyr;� (cr;�) creates (annihi-
lates) a fermion with spin � at site r, and the sum runs over
all sites of the conduction band. SK

R and scR are the spin
operators of the Kondo impurity and the conduction elec-
trons at site R, respectively, and J > 0 is the Kondo
coupling. To describe the Kondo screening of the magnetic
impurity, we employ a large-N expansion [15–21] whose
general validity has been established previously [16,19].
Here, SK

R is generalized to SUðNÞ and represented via

Abrikosov pseudofermions fym, fm which obey the con-

straint
P

m¼1...Nf
y
mfm ¼ 1 where N ¼ 2Sþ 1 is the spin

degeneracy of the magnetic impurity. This constraint is
enforced by means of a Lagrange multiplier "f, while the

exchange interaction in Eq. (1) is decoupled via a hybrid-
ization field, s. For fixed J, we then obtain "f and s on the

saddle point level by minimizing the effective action [16].
Finally, the tunneling process into a conduction electron
state at r and the f-electron state at R, as schematically
shown in Fig. 1, is described by

H T ¼ X
�

tcc
y
r;�d� þ tff

y
R;�d� þ H:c:; (2)

where d� destroys a fermion in the STS tip. The total
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current flowing from the tip into the systems is [22]

IðVÞ ¼ � e

@
Re

Z V

0

d!

2�
½tcĜK

12ð!Þ þ tfĜ
K
13ð!Þ� ; (3)

with the full Keldysh Green’s function matrix given by

ĜKð!Þ ¼ ½1̂� ĝrð!Þt̂��1f̂0ð!Þ½1̂� t̂ĝað!Þ��1;

f̂0ð!Þ ¼ 2i½1� 2n̂Fð!Þ� Im½ĝrð!Þ�;

ĝrð!Þ ¼
grt ð!Þ 0 0

0 grccðr; r; !Þ grcfðr;R; !Þ
0 grfcðR; r; !Þ grffðR;R; !Þ

0
BB@

1
CCA:

(4)

Here, t̂ is the symmetric hopping matrix with nonzero
elements t̂12 ¼ tc, t̂13 ¼ tf. n̂F is diagonal containing the

Fermi-distribution functions of the tip, f- and c-electron
states. grt is the retarded Green’s function of the tip, and

g��ðr0; r; �Þ ¼ �hT��r0 ð�Þ�y
r ð0Þi (�, � ¼ c, f) describes

the many-body effects arising from the hybridization of the
conduction band with the f-electron level, and the con-
comitant screening of the magnetic moment, with

grffðR;R; !Þ ¼ ½!� "f � s2gr0ðR;R; !Þ��1;

grccðr; r; !Þ ¼ gr0ðr; r; !Þ
þ gr0ðr;R; !ÞsgrffðR;R; !Þsgr0ðR; r; !Þ;

grcfðr;R; !Þ ¼ gr0ðr;R; !ÞsgrffðR;R; !Þ; (5)

where gr0 is the retarded Green’s function of the unhybri-

dized conduction electron band.
While the results shown below are obtained from Eq. (3)

via differentiation, it is instructive to consider the leading
order contributions to dI=dV in the weak-tunneling limit,
tc, tf ! 0, given by

dIðVÞ
dV

¼ 2�e

@
Nt½t2cNcðr; VÞ þ t2fNfðR; VÞ

þ 2tctfNcfðr;R; VÞ� (6)

with Nt, Nc, and Nf being the density of states of the tip,

conduction, and f-electron states, respectively, and Ncf ¼
�Imgrcf=�. The last term in Eq. (6) describes quantum

interference processes between the two tunneling paths,

which, as we show below, are crucial in determining the
line shape of the differential conductance.
In Fig. 2(a) we present the experimental dI=dV data of

Ref. [11] for a tip positioned above a Co atom on a Au(111)
surface together with a theoretical fit obtained from Eq. (3).
Here, tunneling into the conduction band involves only the
state at R, i.e., r ¼ R. The peak and dip in dI=dV are a
direct signature of the hybridization between the conduc-
tion band and the f-electron state of the Kondo impurity
and are commonly referred to as the Kondo resonance. As
input parameters, we took the screening conduction band
to be given by the Au(111) surface states possessing a
triangular lattice structure with t ¼ 1:3 eV and � ¼
�7:34 eV [23], and used N ¼ 4 as required for the de-
scription of the spin 3=2 of Co. The theoretical dI=dV
curve is then solely determined by J and tf=tc, which

control the width of the dip and the asymmetry of
dI=dV, respectively. By performing an extensive survey,
we found that there exists a unique set of parameters, J ¼
1:39 eV and tf=tc ¼ 0:0066, that yield the very good

quantitative agreement between the theoretical and experi-
mental data shown in Fig. 2(a). While the STS tip is
positioned above the Co atom, tf=tc is small, likely reflect-
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FIG. 2 (color online). (a) Experimental dI=dV curve of
Ref. [11] at the site of a Co atom on a Au(111) surface together
with a theoretical fit from Eq. (3) with N ¼ 4, tf=tc ¼ 0:066,

tc ¼ 1 meV, Nt ¼ 1=eV, and J ¼ 1:39 eV yielding s ¼
0:25 eV, and "f ¼ 19 meV. A constant background was sub-

tracted from the experimental data. (b) Conduction electron
LDOS, Ncð!Þ, (c) f-electron LDOS Nfð!Þ, and (d) Ncfð!Þ at
R. (e) dI=dV at a distance of r ¼ 3a0 from the Co atom for tf ¼
0. Parameters in (b)–(e) are the same as in (a). (f) Experimental
dI=dV curve of Ref. [7] at r ¼ 5 �A from the Co atom.

FIG. 1 (color online). Tunneling paths into the conduction and
f-electron states with amplitudes tc and tf, respectively.
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ing the suppression of the tunneling process into the
f-electron state by Coulomb effects. Moreover, using the
value of J obtained from the fit, we computed the LDOS of
the conduction and f-electron states, shown in Figs. 2(b)
and 2(c), respectively, as well as Ncf [see Fig. 2(d)], which

reflects the electronic correlations between the two bands.
The fact that the line shape of the conduction band LDOS
is qualitatively different from that of dI=dV demonstrates
the importance of a second tunneling path and the resulting
quantum interference in determining the latter. This con-
clusion is in direct contrast to the assumption of a single
tunneling path made in Ref. [9]. Moreover, as the STS tip is
moved away from the Co atom, direct tunneling into the
f-electron state becomes suppressed and tf ! 0 [10,13].

The theoretical dI=dV curve at a distance of r ¼ 3a0 from
the Co atom, shown in Fig. 2(e), was therefore obtained
with tf ¼ 0. Note that while tf ¼ 0, the asymmetry of

dI=dV is now the same as that at the site of the Co atom,
and qualitatively agrees with the experimental dI=dV

curve at r ¼ 5 �A [7] shown in Fig. 2(f), demonstrating
the consistency of our approach. A more quantitative fit
would require an extensive spatial survey of dI=dV away
from the Co atom. Finally we note that the good theoretical
fit in Fig. 2(a) uniquely requires N ¼ 4, consistent with the
spin 3=2 of Co. Indeed, for N ¼ 2, corresponding to S ¼
1=2, no fit to the experimental data can be obtained. In
particular, while for N ¼ 2 one can find a set of J and tf=tc
that yields the overall asymmetry of the experimental
dI=dV curve, the resulting theoretical curve is shifted to
negative energies by about 5 meV (in comparison to the
one for N ¼ 4), thus clearly distinguishing the N ¼ 2 and
N ¼ 4 cases [see, e.g., Fig. 3(d)]. This demonstrates that
dI=dV directly reflects the spin of the screened magnetic
moment.

The asymmetry of the dI=dV line shape is determined
by two microscopic properties: the particle-hole asymme-
try of the screening conduction band, and the ratio of the
tunneling amplitudes, tf=tc. To demonstrate this depen-

dence, we present in Fig. 3 the evolution of dI=dV with
increasing ratio tf=tc. To contrast and complement the

results shown in Fig. 2, we take N ¼ 2, corresponding to
a spin-1=2 moment, and consider a conduction band on a
square lattice with t ¼ 0:5E0 and � ¼ �1:809E0. The
resulting circular Fermi surface with Fermi wavelength
�F ¼ 10a0 is representative of the Au(111) and Cu(111)
surface states employed in Refs. [7,11,12]. For tf ¼ 0

[solid line in Fig. 3(a)], dI=dV exhibits a Kondo resonance
whose asymmetry is opposite to the experimentally ob-
served one shown in Fig. 2(a). The asymmetry of dI=dV
for tf ¼ 0 is a direct consequence of the particle-hole

asymmetry of the conduction band. Indeed, reversing the
latter via � ! ��, also leads to a reversal of the asym-
metry in dI=dV, as shown by the dashed line in Fig. 3(a).
Moreover, with increasing tf=tc, the height of the peak on

the negative energy side, as well as the width of the dip in
dI=dV, decrease while its minimum shifts to lower ener-

gies [Fig. 3(b)], leading to an almost symmetric dI=dV
curve for tf=tc ¼ 0:062 [Fig. 3(c)]. Increasing tf=tc even

further [Fig. 3(d)] now reverses the asymmetry in dI=dV,
yielding a peak on the positive energy side, and a minimum
at slightly negative energies. The dI=dV line shape is now
similar to that observed experimentally; however, the mini-
mum in dI=dV is located at negative energies, thus clearly
distinguishing the N ¼ 2 and N ¼ 4 cases. Further in-
creasing tf=tc leads to an increase in the height of the

peak and a widening of the dip [Fig. 3(f)].
We next turn to the discussion of the differential con-

ductance in a Kondo lattice system, whose complex prop-
erties are determined by the competition between the
Kondo screening of the magnetic moments and their anti-
ferromagnetic ordering [2]. Its Hamiltonian is obtained by
appropriately extending Eq. (1), and adding the term
H I ¼

P
r;r0Ir;r0S

K
r S

K
r0 representing the antiferromagnetic

interaction between the moments. Here, we take Ir;r0 > 0
to be nonzero for nearest-neighbor sites only. Using again
an Abrikosov pseudofermion representation of SK

r , the
Hamiltonian is decoupled by introducing the spatially

uniform mean fields [20] s ¼ Jhfyr;�cr;�i and �0 ¼
Ihfyr;�fr0;�i, where the latter is a measure of the magnetic

correlations in the system. The constraint hnfi ¼ 1 is en-

forced via an on-site energy,
P

r"ff
y
r;�fr;�. We then diago-

nalize the resulting mean-field Hamiltonian, and compute
s, �0, and "f self-consistently.

The magnetic interactions in the (screened) Kondo lat-
tice have a profound effect on the form of the differential
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FIG. 3. (a)–(f) dI=dV at r ¼ R as a function of energy for
N ¼ 2, Nt ¼ 1:0=E0, tc ¼ 0:001E0, and J ¼ 0:5E0 yielding
"f ¼ 0:005 20E0 and s ¼ 0:0847E0, and different values of

tf=tc. The dashed line in (a) represents dI=dV for a conduction

band with a reversed particle-hole (rph) asymmetry.
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conductance, as shown in Fig. 4, where we present the
evolution of dI=dV with tf=tc for two different magnetic

interaction strengths, I=J ¼ 0:001 (left column) and I=J ¼
0:015 (right column). While for I=J ¼ 0:001, dI=dV ex-
hibits a hard hybridization gap for all values of tf=tc, only a

suppression of the differential conductance around the
Fermi energy is found for I=J ¼ 0:015. However, in both
cases, dI=dV exhibits a peak on the negative energy side
[indicated by arrows in Figs. 4(a) and 4(d)], which arises
from the van Hove singularity of the large (hybridized)
Fermi surface. While this peak is suppressed with increas-
ing tf=tc [Figs. 4(b) and 4(e)], a second peak emerges

[indicated by arrows in Figs. 4(c) and 4(f)], which is the
precursor of the emerging f-electron band. Increasing I=J
leads to a shift of this peak to higher energies.

These results show that the existence of a two peak
structure in dI=dV as predicted in Ref. [5] is not a generic
feature of heavy-fermion materials. Rather, the specific
form of dI=dV depends sensitively on tf=tc, the strength

of the magnetic interaction, and the particle-hole asymme-
try of the conduction band. In particular, the qualitative
differences in dI=dV between I=J ¼ 0:001 and 0.015
demonstrate that dI=dV is a direct measure for the strength
of the antiferromagnetic interaction. Finally, we note that a
theoretical analysis of the experimental dI=dV data by
Schmidt et al. [1] on the heavy-fermion compound
URu2Si2, which is currently under way, will provide an
important test for our model.

In summary, using a large-N theory, we showed that
quantum interference between tunneling paths is crucial in
explaining the experimentally observed Fano line shape in
dI=dV. This allows one to uniquely extract the Kondo
coupling, the ratio of the tunneling amplitudes, and the
impurity spin from the experimental dI=dV curve. Finally,
we showed that dI=dV reflects the strength of the antifer-
romagnetic interaction in Kondo lattice systems.
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