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We investigate the behavior of turbulent systems in geometries with one compactified dimension. A
novel phenomenological scenario dominated by the splitting of the turbulent cascade emerges both from
the theoretical analysis of passive scalar turbulence and from direct numerical simulations of Navier-

Stokes turbulence.
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In statistical physics most systems display a strong
dependence on the space dimensionality. The best known
example is the existence of critical dimensions in phase
transitions. Among far-from-equilibrium systems, hydro-
dynamic turbulence shows a remarkable dependence on
the spatial dimension as well. In three dimensions, the
nonlinear interaction between different scales is described
by the Kolmorogov-Richardson direct cascade: the kinetic
energy injected at large scale by an external forcing is
transferred to smaller and smaller eddies until it reaches
the scales where it is dissipated by viscosity [1]. By con-
trast, in two dimensions, the simultaneous conservation of
kinetic energy and enstrophy results in an inverse energy
cascade; i.e., the energy injected by the forcing is trans-
ferred to large-scale structures [2]. Moreover, three-
dimensional turbulence is characterized by anomalous
scaling and small-scale intermittency [1], whereas the
inverse cascade is apparently self-similar and even shows
some signatures of conformal invariance [3]. The transition
between the two behaviors and the possible existence of a
critical dimension between d = 3 and d = 2 have been
investigated mainly in models of turbulence where the
dimension was introduced as a formal parameter [4-6].
In this Letter, we rather opt for a geometrical way of
looking in between integer dimensions, and examine tur-
bulent systems which can be regarded as transitional be-
tween a d-dimensional isotropic system and a (d — 1)-
dimensional one. Namely, we consider a d-dimensional
isotropic system and make one dimension of the space
periodic. The compactified dimension can then be col-
lapsed or inflated at will so as to connect continuously
the two extreme cases. We start by considering the turbu-
lent transport of a passive scalar field. This system displays
a close similarity to hydrodynamic turbulence (intermittent
direct cascade of scalar variance or scale-invariant inverse
cascade depending on the properties of the flow), and has
the advantage of being analytically solvable [7]. We then
study the full hydrodynamical problem by means of direct
numerical simulations. The novel feature that emerges
from our study is the splitting of the turbulent cascade in
both systems. The scalar variance (or the kinetic energy)
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injected at a given length scale flows both toward small and
large scales, thus giving rise to a simultaneous double
cascade of the same quantity.

Let us start with the analysis of the analytically solvable
case. The evolution of a passive scalar field 6(x,t) is
described by the advection-diffusion equation:

9,0 +v-V0=xkV20+ o, (1)

where « is the diffusivity of the scalar and ¢(x, 7) is the
source term. The scalar field does not influence the veloc-
ity, whose statistical properties are given. We model the
turbulent flow by means of the Kraichnan ensemble [8].
Thus, v(x, ) is a Gaussian stochastic process with zero
mean and correlation: (v, (X + 1,1+ Tvg(x, 1) =
[d(c{ﬂ — d,p(r)]8(7) with dgﬂ constant and d,g(—r) =
d,p(r). The flow is statistically homogeneous, parity in-
variant, stationary, and invariant under time reversal. The
tensor 2d,4(r) represents the spatial correlation of the
velocity differences [7]; its form will be specified later.

The source is assumed to be random as well, and more
specifically Gaussian, independent of the velocity, with
zero mean and correlation: {(p(x +r,t+ 7)p(x, 1)) =
®(r)8(7), where O(r) rapidly decays to zero for r = ||r||
greater than the correlation length €.

To study the cascade of scalar variance, we consider the
single-time  correlation  C(r, t) = (6(x + 1, 1))0(x, 1)),
which does not depend on x owing to the statistical homo-
geneity of the velocity. In the Kraichnan model, C(r, 7)
satisfies the partial differential equation

9,C = M(r)C + ®, 2)

where M(r) =d,z(r)d,, d,, +2Kd, 0, (summation over
repeated indexes is implied) [8]. Without loss of generality,
we assume 6(x,0) = 0 and hence C(r, 0) = 0. The (gen-
eralized) solution of Eq. (2) then takes the form [9]

C(r, 1) = /0 ds f dp®(p)p(r, t; p, s). 3)

In the above equation, p(r, t; p, s) is the probability density
function that two fluid particles being at separation r at
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time ¢t were at separation p at time s < t. The probability
density function describes the backward-in-time separation
of Lagrangian trajectories and satisfies

—3,p(r, t;p,5) = M (p)p(r, t; p, 5), )

where MT denotes the adjoint of M: MT(p) =
apdapﬁdaﬁ(p) +2kd, 9, . Egs. (2) to (4) establish the
link between the Eulerian statistics of the scalar field and
the Lagrangian dynamics of fluid particles [7].

Gawedzki and Vergassola have studied a d-dimensional
version of the Kraichnan model where the flow is in
addition statistically isotropic and compressible and where
d,p(r) is scale invariant with exponent 0 < & <2 [10].
This latter property implies that, in a typical realization,
v(x, f) is not smooth in space and its spatial regularity
decreases with decreasing &. The compressibility degree
of the flow is defined as g = ((V - v)?)/{tr(Vv)?) and sat-
isfies 0 = g = 1. In this model, the Reynolds number is
formally infinite since there is neither a viscous nor a large-
scale regularization of the velocity.

To understand passive scalar turbulence in geometries
with a compactified dimension, it is instructive to briefly
review the two- and one-dimensional isotropic cases under
the assumptions of Ref. [10]. We shall directly consider the
limit k — 0.

On the Euclidean plane, three regimes can be identified
[10]. For weak compressibility (¢ < 1/2), Lagrangian tra-
jectories separate superdiffusively, thus generating a small-
scale dissipation of scalar fluctuations. Correspondingly,
the scalar field displays a stationary direct cascade of (#%);
i.e., the variance injected by the source is entirely trans-
ferred to small scales and eventually dissipated at a con-
stant rate €g,y, €qual to the injection rate ®(0). In this
regime, Eq. (2) has a time-independent solution and
(6%(t)) = C(0, 1) converges in time to a constant value.
For strongly compressible flows (p = 2/&?), Lagrangian
trajectories rather tend to collapse in time, and thus transfer
scalar variance to large-scale structures in an inverse-
cascade process. In terms of the above Lagrangian formu-
lation of transport [Egs. (2) to (4)], the inverse cascade of
(6?) follows from the convergence of p(r, t; p, s) to 8(p) as
|t — s| — oco. Inserting the long-time behavior of
p(r, t; p, s) into Eq. (3) indeed yields: (#%(1)) ~ €plast —
o with €, = ®(0). Finally, in the regime of intermediate
compressibility (1/2 < p < 2/&?), the long-time behavior
of the variance is (6%(r)) = O(t*) with 0 <b < 1. The
scalar variance is partly dissipated at small scales at a
rate that equals the injection rate only for ¢— oo.
Simultaneously, a fraction of (#?) is transferred to large
scales at a rate asymptotically vanishing in time.

On the real line, the only relevant parameter is &. The
value ¢ = 1 marks a phase transition in the dynamics of
fluid particles and hence in the behavior of the scalar [10].
For ¢ > 1, the trajectories collapse in time and produce an
inverse cascade of (#)? with transfer rate €y = P(0). For

£ <1,(0%(1)) = O(1"/2=9) 50 that €44y, equals ®(0) only

in the limit # — oo, as in the regime of intermediate com-
pressibility in two dimensions.

As a transitional manifold between the plane and the
straight line, we consider the surface of an infinite cylinder,
which can be inflated or collapsed to reproduce the two
limiting geometries. A cylindrical surface is described by
two coordinates: —oo <r; <oo and —wL = r, <L,
where L is the radius of the cylinder. The isotropic
Kraichnan ensemble can be generalized to this geometry
by defining dop(r) =X c1/0)z [Co dki (1 — €M) F 4 5(K),
where the sum is taken over integer multiples of 1/L and

Fop(k) o k2 7¢[(1 = 9)8ap + (20 — DAk %kakpl. (5)

The Fourier series in d,g(r) guarantees the periodicity of
v(x, ) with respect to the radial coordinate r,. With this
definition, the limit of d,g4(r) for L — oo yields the iso-
tropic Kraichnan ensemble on the plane with degree of
compressibility ¢ and scaling exponent ¢ [7,10,11]. We
take @ < 1/2 so that the limiting system exhibits a sta-
tionary direct cascade of (62). The opposite limit, L — 0,
yields the one-dimensional Kraichnan ensemble with scal-
ing exponent ¢ + 1, where £ must be taken less than one so
that & + 1 <2 [7,10,11]. According to the above discus-
sion of the isotropic case, the limit of vanishing radius
leads to the inverse cascade of (§?). By varying L, it is thus
possible to move from a direct cascade in two dimensions
to an inverse cascade in one dimension.

For any 0 < L < o0, a qualitative picture of the dynam-
ics can be inferred from the one- and two-dimensional
isotropic cases. We assume for instance €, > L. At r <
L, fluid particles move in a two-dimensional isotropic flow
with p < 1/2; therefore, they separate superdiffusively and
dissipate (f?) at a constant rate. At r > L, fluid particles
move in an essentially one-dimensional flow with scaling
exponent larger than 1; they tend to collapse and thus
transfer scalar variance to scales larger than €,. As a
consequence, the cascade of (6?) splits into a direct branch
and an inverse one. In this system, small-scale dissipation
and transfer to large scales coexist. Similar arguments can
be repeated for €, < L.

A quantitative prediction of the split-cascade pro-
cess can be obtained through an approximate analysis of
Eq. (4). We first consider the case €, > L. At separations
p >> L, the components of d,z(p) can be replaced with
their asymptotic expansions: dy;(p) ~ D;lp,|'*¢ + &,
dy(p) ~ Dslp '€ + &, and dy5(p) = dyi(p) ~ 0 with
D; and &; positive constants (i = 1, 2) [11]. The expansion
of d,p(p) shows that, at large separations, the velocity
difference is the sum of two independent one-dimensional
random fields. In particular, the axial component is a
Kraichnan flow with scaling exponent & + 1. At p > L,
di(p) and dy(p) include the effective diffusivities &,
and K,, which are reminiscence of the small-scale motion.
We can therefore set k = 0 in the present analysis as well.
We consider p(r,1; p;,s) = f’_’%TL dp,p(r, t; p1, P2, 5).
Integrating Eq. (4) over p, and taking into account periodic
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boundary conditions, [d,, pl,,—. =[9,,P],,=— 71, yields
a partial differential equation for p,(r, t; p, s). This equa-
tion admits the time-independent solution p,(r, 7; p;, s) =
(Dylp;|'"¢ + &;)~!, which we can insert in Eq. (3) to
compute the long-time behavior of (62(f)). For the sake
of simplicity, we further assume ®(r) = ®(0) if r = €,
and zero otherwise. Then, Eq. (3) yields: ®(0)r —
C(1, ry) < D(0)(L/€,)¢t, so that a fraction o« (L/€,)* of
the injected variance does not flow upwards, and is even-
tually dissipated at small scales. If S(r) = (0(x +r, 1) —
0(x, 1)J*) denotes the scalar structure function, the above
behavior is consistent with the picture of an inverse cas-
cade with S(|r,]) ~ (®(0)/D){1 — OL(L/€,)*THr |'~¢ at
lri| > €,, along with a small-scale behavior S(|r|) ~
(@(0)/D) L Iri| = (@0)/D)OLL/ ) TIr "¢ at
L<L|r| <t o~ In the right-hand side of the latter expres-
sion, the second term is the inhomogeneous contribution
arising from 9,C — ®(0) and the first one is the zero mode
needed to match the correlation function. The remaining
direct cascade flux &;S(L)/L? ~ ®(0)(L/{,)¢ is then
transferred to two-dimensional motion at » < L and finally
dissipated at small scales.

The case €, < L can be examined by computing the
small-scale form of p(r, 7; p, 5). At scales p < L, M*(p)
can be replaced with its two-dimensional isotropic
form: Mt(p) * p~19,p%9,p' "¢ with a = —1 + (2 +
&)/(pé& + 1) [10]. The zero mode of M*(p) corresponding
to zero flux at p = 0 gives p(r, t; p, s) = p® 1 7¢ for p <
L. We can then insert this behavior in Eq. (3) to obtain:
(0%(1)) ~ €yt as 1— o0 with €, < ®0)(€,/L)'T97¢,
Once more, a fraction of the injected variance is transferred
to large scales, whereas the remaining part is dissipated at
small scales. The splitting of the cascade of scalar variance,
shown here in the asymptotic cases €,/L>>1 and
€¢/L < 1, holds for a generic €¢/L as a result of the
convergence of p(r,#;p,5) to a broad-in-p time-
independent form [11]. Combining this latter result
with Eq. (3) indeed yields: (6%(1)) ~ €,,t as 1 — oo with
€y < ©(0).

Some remarks conclude the analysis of passive transport
on a cylindrical surface. First, the above results have been
obtained for a Prandtl number Pr= v/k =0 (v is the
kinematic viscosity of the fluid). Provided that p < 1/2,
we nevertheless expect the cascade splitting for any Pr >0
as well as in the limit Pr — oco. The small-scale flow is
indeed weakly compressible, and therefore nearby trajec-
tories separate irrespective of the value of Pr [12].
Moreover, the large-scale strongly compressible nature of
the flow does not depend on Pr. Second, varying L from
infinity to zero produces a smooth modification of the
cascade; i.e., the dissipation rate €g4,,,, continuously varies
from ®(0) to zero. The system, therefore, does not exhibit
a phase transition as a function of L.

Let us now discuss the case of hydrodynamic turbulence.
The dynamics of the velocity field u(x, 7) is given by the

Navier-Stokes equation
du+u-Vua=-VP/o+ vV2u+f (6)

supplemented by the incompressibility constraint V - u =
0. Here P denotes the pressure and @ is the density of the
fluid. The flow is sustained by a stochastic Gaussian, white-
in-time noise f(x, r). The forcing is active only on the
horizontal velocities u,, Uy, it depends only on the hori-
zontal components x, y, and it is localized in Fourier space
in a narrow band of wave numbers |k| = k. Direct nu-
merical simulations were performed by means of a stan-
dard 2/3-dealiased pseudospectral method on a periodic
domain with various aspect ratios, as in Ref. [13]. This
geometrical configuration can be considered as intermedi-
ate between two- and three-dimensional isotropic turbu-
lence. The numerical simulations were conducted with
uniform grid spacing, square basis L, = L,, aspect ratio
R=1L,/L, and resolution N,= N, = RN, = 1024.
Viscous dissipation has been replaced by an hyperviscous
damping term (—1)7~'v,V2Pu.

We studied the transition from 2D to 3D at varying the
aspect ratio of the domain. The mean kinetic energy E(r) =
1/2(|lu(x, 1)|*) provides a suitable probe of the transition.
In 2D flows at high Reynolds number, kinetic energy grows
linearly in time with a growth rate almost equal to the
injection rate €;,. Conversely, in 3D flows, after an initial
transient ¢, required to build up the turbulent cascade, the
kinetic energy attains a statistically constant value. In the
intermediate situation realized in our setup, we observe a
linear growth of kinetic energy for ¢t > ¢, (see Fig. 1), as in
the two-dimensional case, but the growth rate diminishes
as the vertical scale L, is increased, and almost vanishes
when L_/€; ~1/2. As in the case of the scalar field, this
behavior suggests that the turbulent cascade splits also in
the hydrodynamic case. Within this picture, part of the
energy injected by the forcing is transferred toward large
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FIG. 1. Growth of mean kinetic energy for various values of

the aspect ratio L,/€; =1/8, 1/4, 3/8, 1/2 (from top to
bottom). The straight line represents the theoretical growth
rate for a two-dimensional flow. Inset: Growth rates (dE/dt)
as a function of the ratio L_/{,. Parameters of the simulation:
L,=2m /L, =1/16, vg =107,
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FIG. 2. Spectral flux of kinetic energy for various aspect ratio
L./€;=1/8,1/4,3/8, 1/2 (from bottom to top). Simulation
parameters as in Fig. 1. The inset reports the third order structure
function of the velocity, S3(r), for L,/€¢, = 1/4.

scales and feeds an inverse energy cascade as in two-
dimensional flows. The remnant energy gives rise to a
direct energy cascade toward small scales, as in the
three-dimensional case.

This suggestive scenario is supported by the inspection
of the spectral fluxes of kinetic energy (see Fig. 2). The
fluxes show a flat positive plateau in the wave-number
range k > ky, which confirms the presence of a direct
cascade at small scale. At small wave number k < k, the
fluxes have stronger fluctuations, but their mean negative
value is consistent with the presence of an inverse energy
cascade. As expected, the ratio between the energy flux €,
and €4, Of the inverse and direct cascade, respectively, is
a decreasing function of the ratio L /€.

In the range of scales corresponding to the inverse

cascade the energy spectrum of horizontal velocities has

a scaling region Ey(k) ~ exp’k~>/3, as observed in two-

dimensional flows. At scales smaller than L, Kolmogorov
spectra are observed both for horizontal and vertical veloc-
ities, signaling the presence of three-dimensional turbu-
lence at small scales (see Fig. 3).

We argue that the cascade splitting described above, i.e.,
coexistence of 3D and 2D turbulence, should take place
whenever the flow is confined in one direction, be it by
material boundaries or by any other physical mechanism of
dimensional reduction, e.g., stable stratification.

Whether or not Navier-Stokes turbulence displays a
phase transition from this novel regime to the classical
three-dimensional regime remains still unclear. Our nu-
merical results seem to indicate that the inverse-cascade
flux becomes negligible as the vertical scale approaches the
forcing length-scale, therefore supporting the conjecture of
a phase transition at some critical value of the ratio L, /€.
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FIG. 3. Kinetic energy spectrum of horizontal (squares) and
vertical (circles) velocities. Dashed lines represents Kolmogorov
scaling. Parameters of the simulation: L, = 27, €;/L, = 1/8,
L./L,=1/32, vg =107%.

Yet, we cannot exclude, on the basis of present data, the
possibility that a residual inverse cascade survives. Well
designed experiments with electromagnetically driven thin
fluid layers joint with high-resolution direct numerical
simulations could provide the key to settle this fundamen-
tal question about the nature of turbulence.
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