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We study, in two space dimensions, the collective properties of constant-speed polar point particles

interacting locally by nematic alignment in the presence of noise. This minimal approach to self-propelled

rods allows one to deal with large numbers of particles, which exhibit a rich phenomenology distinctively

different from all other known models for self-propelled particles. Extensive simulations reveal long-

range nematic order, phase separation, and space-time chaos mediated by large-scale segregated

structures.
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Collective motion is a ubiquitous phenomenon observ-
able at all scales, in natural systems [1] as well as human
societies [2]. The mechanisms at its origin can be remark-
ably varied. For instance, they may involve the hydrody-
namic interactions mediated by the fluid in which bacteria
swim [3], the long-range chemical signaling driving the
formation and organization of aggregation centers of
Dictyostelium discoideum amoeba cells [4], or the local
cannibalistic interactions between marching locusts [5]. In
spite of this diversity, one may search for possible universal
features of collective motion, a context in which the study
of ‘‘minimal’’ models is a crucial step. Recently, the in-
vestigation of the simplest cases, where the problem is
reduced to the competition between a local aligning inter-
action and some noise, has revealed a wealth of unexpected
collective properties. For example, constant-speed, self-
propelled, polar point particles with ferromagnetic inter-
actions subjected to noise (as in the Vicsek model [6]) can
form a collectively moving fluctuating phase with long-
range polar order even in two spatial dimensions [7], with
striking properties such as spontaneous segregation into
ordered solitary bands moving in a sparse, disordered sea,
or anomalous (‘‘giant’’) density fluctuations [8]. In con-
trast, active apolar particles with nematic interactions only
exhibit quasi-long-range nematic order in two dimensions
with segregation taking the form of a single, strongly
fluctuating, dense structure with longitudinal order and
even stronger density fluctuations than in the polar-
ferromagnetic case [9,10].

Noting that these differences reflect those in the local
symmetry of particles and their interactions, a third situ-
ation can be defined, intermediate between the polar-
ferromagnetic model and the apolar nematic one, that of
self-propelled polar particles aligning nematically. Such a
mechanism is typically induced by volume exclusion in-
teractions, when elongated particles colliding almost head-
on slide past each other (Fig. 1). Thus, self-propelled polar
point particles with apolar interactions can be conceived as

a minimal model for moving rods interacting by inelastic
collisions [11–13]. Other relevant situations can be found
in biology, such as gliding myxobacteria moving on a
substrate [14], or microtubules driven by molecular motors
grafted on a surface [15].
In this Letter, we study constant-speed polar point par-

ticles interacting locally by nematic alignment in the pres-
ence of noise. The simplicity of this model allows us to
deal with large numbers of particles, revealing a phenome-
nology previously unseen in more complicated models
sharing the same symmetries [11–13] but in agreement
with the linear analysis of [16]. Our study, restricted to
two space dimensions, shows, in particular, collective
properties distinctively different from both those of the
polar-ferromagnetic case and of active nematics: only ne-
matic order arises in spite of the polar nature of the
particles, but it seems genuinely long-ranged. Spontane-
ous density segregation is also observed, but here it appears
as a bona fide phase separation: in the ordered side, a dense
band occupying a fraction of space along which particles
move in both directions arises when noise is strong enough.
Its instability marks the order-disorder transition. It van-
ishes at strong noise, splitting the disordered phase in two.
The class of polar particles aligning nematically exhibits
thus a total of four phases.
Our model consists of N point particles moving off

lattice at constant speed v0. In two dimensions, particle j
is defined by its (complex) position rtj and orientation �tj,

updated at discrete time steps according to

FIG. 1. Nematic alignment of polar particles illustrated by
inelastic collisions of rods. Particles incoming at a small angle
(left) align ‘‘polarly,’’ but those colliding almost head-on slide
past each other, maintaining their nematic alignment (right).
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�tþ1
j ¼ arg

�X
k�j

sign½cosð�tk � �tjÞ�ei�tk
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j (1)

r tþ1
j ¼ rtj þ v0e

i�tþ1
k ; (2)

where the sum is taken over all particles k within unit
distance of j (including j itself), and � is a white noise
uniformly distributed in ½� �

2 ;
�
2� [17]. (A continuous-time

version of this model can be found in [18].) The system has
two main control parameters: the noise amplitude �, and
the particle density � ¼ N=A, where A is the domain area.
We consider periodic boundary conditions. Polar and ne-
matic order can be characterized by means of the two time-
dependent global scalar order parameters PðtÞ ¼
jhexpði�tjÞijj (polar) and SðtÞ ¼ jhexpði2�tjÞijj (nematic),

as well as their asymptotic time averages P ¼ hPðtÞit and
S ¼ hSðtÞit.

Here, we mostly report on the behavior of the system for
� ¼ 1

8 and v0 ¼ 1
2 , varying �. We start with a brief survey

of the stationary states observed in a square domain of
linear size L ¼ 2048 (Figs. 2 and 3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise, while P always remains near zero (not
shown). This is in agreement with the findings of [16].
Both the ordered and the disordered regimes are subdi-
vided in two phases, one that is spatially homogeneous
[Figs. 2(a) and 2(e)], and one where density segregation
occurs, leading to high-density ordered bands along which
the particles move back and forth [Figs. 2(b)–2(d)]. A total
of four phases is thus observed, labeled I to IV by increas-
ing noise strength hereafter. Phases I and II are nematically
ordered, phases III and IV are disordered.

Phase I, present at the lowest � values, is ordered and
spatially homogeneous [Fig. 2(a)]. Nematic order arises
quickly from any initial condition, even though long-lived
dense polar packets are observed locally: statistically, two
subpopulations of particles migrate in opposite directions
[Fig. 4(a)], constantly exchanging particles. These ‘‘turn
around’’ events occur at exponentially-distributed times �
[Fig. 4(b)]. Increasing system size, the nematic order pa-
rameter S is almost constant, decaying slower than a power

law [Fig. 4(c)]. A good fit of this decay is given by an
algebraic approach to a constant asymptotic value S�.
Thus, our data seem to indicate the existence of true
long-range nematic order. (Quasi-long-range order, ex-
pected classically for two-dimensional nematic phases, is
characterized by an algebraic decay of S.) A discussion of
this striking fact is given below. Finally, as expected on
general grounds for homogeneous ordered phases of active
particles [10], phase I exhibits so-called giant number
fluctuations: the fluctuations �n2 ¼ hðn� hniÞ2i of the
average number of particles hni ¼ �‘2 contained in a
square of linear size ‘ follow the power law �n� hni�
with �> 1

2 [Fig. 4(d)]. Our estimate of � is compatible to

that measured for polarly ordered phases � ¼ 0:8 [8].
Phase II differs from phase I by the presence, in the

steady state, of a low-density disordered region. In large-
enough systems, for � * �I-II ’ 0:098ð2Þ, a narrow, low-
density channel emerges rather suddenly, like in a nuclea-
tion process [Fig. 2(b)]. It becomes wider at larger �
values, so that one can then speak of a high-density ordered
band, typically oriented along one of the main axes of the
box, amidst a disordered sea [Fig. 2(c)]. Particles travel
along the high-density band, turning around or leaving the
band from time to time. Within the band, nematic order
with properties similar to those of phase I is found (slow
decay of S with system size, giant number fluctuations).
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FIG. 3 (color online). Nematic order parameter S (in black)
and its rms fluctuations �S (in red) as function of the squared
noise amplitude �2 for a square domain of linear size L ¼ 2048.
Here, and throughout the Letter, time averages are over at least
106 time steps.
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FIG. 2 (color online). (a)–(c) Typical steady-state snapshots at different noise values (linear size L ¼ 2048). (a) � ¼ 0:08,
(b) � ¼ 0:10, (c) � ¼ 0:13, (d) � ¼ 0:168, (e) � ¼ 0:20. Arrows indicate the polar orientation of particles [except in (d)]; only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [19].
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The (rescaled) band possesses a well-defined profile with
sharper and sharper edges as L increases [Fig. 5(a)]. The
fraction area � occupied by the band is asymptotically
independent of system size and decreases continuously as
the noise strength � increases [Fig. 5(b)]. This, together
with the nucleationlike process leading to the band, is
suggestive of phase separation.

In phase III, spontaneous segregation into bands still
occurs (for large-enough domains); however these thinner
bands are unstable and constantly bend, break, reform, and
merge, in an unending spectacular display of space-time
chaos [Fig. 2(d)] [19]. Thus, the transition between phase II
and III, located near�II-III ’ 0:163ð1Þ, is the order-disorder
transition of the model. It resembles a long but finite wave-
length instability of the band [see for instance Fig. 6(c)]. In
this regime, SðtÞ fluctuates strongly (Fig. 3) and on very
large time scales [Figs. 6(a)]. Nevertheless, these fluctua-

tions behave normally [i.e., decrease like 1=
ffiffiffiffi
N

p
, Fig. 6(b)].

Thus, the space-time chaos self-averages, making phase III
a bona fide disordered phase, albeit one with huge corre-
lation lengths and times.

Increasing further the noise strength, the segregated
bands vanish, leaving phase IV, an ordinary disordered

phase, spatially homogeneous, and with very short corre-
lations in space and time [Fig. 2(e)]. Near the transition
point, at �III-IV ’ 0:169ð1Þ, the nematic order parameter
SðtÞ exhibits bistability between a low amplitude, fast
fluctuating state (typical of phase IV) and a larger ampli-
tude, slowly fluctuating one typical of phase III (not
shown). This suggests a discontinuous disorder-disorder
transition between phase III and IV.
At this point, the most crucial question is perhaps that of

the stability of the nematic order observed in phases I and
II. Indeed, much of what we described above for large but
finite systems relies on our conclusion of possible truly
long-range (asymptotic) order [Fig. 4(c)]. On the one
hand, one could argue that the exponential distributions
of flight times between the two opposite polar orientations
[Fig. 4(b)] define a finite persistence time � and a corre-
sponding finite persistence length scale � � v0� [indi-
cated by the vertical dashed line in Fig. 4(c)]. Therefore,
at scales much larger than �, the polar nature of our par-
ticles could become irrelevant, and the system would then
behave like a fully nematic one, with only quasi-long-
range order. As of now, we have been able to probe systems
sizes up to 3 or 4 times the persistence length �. So far, as
shown in Fig. 4(c), these systems comprising up to twenty
million particles show no sign of breakdown of order. On
the other hand, � is a single-particle quantity. Even though
it is finite and system size independent, particles travel
in rather dense polar packets which have flights longer
than �. Indeed, the giant density fluctuations reported
[Fig. 4(d)] indicate that denser, more ordered, and hence
probably longer-lived packets occur in larger systems. But
should this ‘‘polar packet lifetime’’ diverge with system
size, then one would have a mechanism opening the door
for the emergence of true long-range nematic order. To
summarize this discussion, nematic order could break
down for system sizes much larger than �, but our data
[Figs. 4(c) and 4(d)] and the argument above suggest the
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FIG. 5 (color online). Phase II (stable bands) (a) Rescaled
transverse profiles in square domains of linear size L ¼ 512
(dashed black line), 1024 (dash-dotted red line), and 2048 (solid
blue line) at � ¼ 0:14. (Data averaged over the longitudinal
direction and time, translated to be centered at the same loca-
tion.) Bottom: density profiles. Top: nematic order parameter
profiles. (b) Surface fraction � as a function of � (defined here
as the midheight width of the rescaled S profile).
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FIG. 4 (color online). Phase I (homogeneous nematic order,
� ¼ 0:095). (a) Polar orientation probability distribution in a
system of size L ¼ 2048. (b) Distribution of particle transition
times � between the two peaks of (a) for three different system
sizes L ¼ 512, 1024, and 2048 (black, red [light gray], and blue
[dark gray] lines, respectively). (c) Nematic order parameter S vs
system size L in square domains. The vertical dashed line marks
the persistence length � � 4400 (see text). Inset: S� S� ¼
0:813063 vs L (red dashed line: L�2=3 decay). (d) Number
fluctuations �n as a function of average particle number hni
(see text) in a system of size L ¼ 4096 (dashed line: algebraic
growth with exponent 0.8).
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picture of two opposite polar components each with true
long-range order (as in fully-polar models [20]) summing
up to true nematic order.

Further work is needed, notably on the nature of the
transitions between our phases, but most of our results are
rather robust. Investigations at other densities than � ¼ 1

8

show that the general picture presented holds, at least up to
� ¼ 1 (not shown). Moreover, the introduction of soft-core
repulsion between particles does not modify our main
findings [21]. Thus, these are not due to the pointwise
nature of the particles, and should also be observed in
more detailed models of self-propelled rods if sufficiently
large populations are considered.

Coming back to the approach of [16], our findings are in
agreement with the linear instability found there of both
the homogeneous nematically-ordered phase (our I-II tran-
sition), and of the homogeneous disordered phase (our IV-
III transition). Further analytical work at the nonlinear
level, possibly along the lines of [22], is needed, though,
to account for the phenomenology found here.

We note also that our results, and in particular the space-
time chaotic motion of the spontaneously segregated bands
(phase III) [19], are reminiscent of the streaming and
swirling regime which characterizes the aggregation of
myxobacteria [14,23]. Our model suggests that no adhe-
sion or chemical signaling is needed for such behavior to
emerge. We therefore believe that our results may be
relevant for the collective dynamics of gliding bacteria,
biofilms and other cells with friction and moderate adhe-
sion. The aspect of volume exclusion may also be an
important ingredient in more complex models addressing
animal groups or human crowds.

At a more general level, our findings reveal unexpected
emergent behavior among even the simplest situations

giving rise to collective motion. Our model of self-
propelled polar objects aligning nematically stands out as
a member of a universality class distinct from both that of
the Vicsek model [6–8] and of active nematics [9]. Thus, in
this out-of-equilibrium context, the symmetries of the
moving particles and of their interactions must be consid-
ered separately and are both relevant ingredients.
We thank J. Toner and S. Ramaswamy for fruitful dis-

cussions. This work was partially funded by the French
ANR projects Morphoscale and Panurge, and the German
DFG Grants No. DE842/2, No. SFB 555, and No. GRK
1558.

[1] Three Dimensional Animals Groups, edited by J. K.
Parrish and W.M. Hamner (Cambridge University Press,
Cambridge, England, 1997), and references therein.

[2] D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 407,
487 (2000).

[3] A. Sokolov et al., Phys. Rev. Lett. 98, 158102 (2007).
[4] E. Ben-Jacob et al., Adv. Phys. 49, 395 (2000).
[5] P. Romanczuk, I. D. Couzin, and L. Schimansky-Geier,

Phys. Rev. Lett. 102, 010602 (2009).
[6] T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995).
[7] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995); Phys.

Rev. E 58, 4828 (1998).
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FIG. 6 (color online). Phase III (unstable bands, � ¼ 0168).
(a) Typical nematic order parameter time series for a system of
linear size L ¼ 2048. (b) S vs N in square domains of increasing
sizes. (The dashed line marks a 1=
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p
decay.) (c) Snapshot of

coarse-grained density field during the growth of the instability
of an initially straight band in a 2048� 512 domain.

PRL 104, 184502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

184502-4

http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1080/000187300405228
http://dx.doi.org/10.1103/PhysRevLett.102.010602
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1103/PhysRevLett.96.180602
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1209/epl/i2003-00346-7
http://dx.doi.org/10.1103/PhysRevLett.97.090602
http://dx.doi.org/10.1103/PhysRevLett.97.090602
http://dx.doi.org/10.1103/PhysRevE.74.030904
http://dx.doi.org/10.1103/PhysRevE.74.030904
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevE.78.031409
http://dx.doi.org/10.1103/PhysRevE.78.031409
http://dx.doi.org/10.1073/pnas.042535699
http://dx.doi.org/10.1073/pnas.042535699
http://dx.doi.org/10.1038/nrmicro733
http://dx.doi.org/10.1038/nrmicro733
http://dx.doi.org/10.1140/epje/i2008-10434-0
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevLett.101.268101
http://dx.doi.org/10.1140/epjst/e2008-00634-x
http://dx.doi.org/10.1140/epjst/e2008-00634-x
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1038/nrmicro1770

