
Single Photons from Coupled Quantum Modes

T.C. H. Liew and V. Savona

Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
(Received 15 December 2009; published 5 May 2010)

Single photon emitters often rely on a strong nonlinearity to make the behavior of a quantum mode

susceptible to a change in the number of quanta between one and two. In most systems, the strength of

nonlinearity is weak, such that changes at the single quantum level have little effect. Here, we consider

coupled quantum modes and find that they can be strongly sensitive at the single quantum level, even if

nonlinear interactions are modest. As examples, we consider solid-state implementations based on the

tunneling of polaritons between quantum boxes or their parametric modes in a microcavity. We find that

these systems can act as promising single photon emitters.
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Introduction.—The construction of single photon
sources [1,2] is a current aim of quantum nonlinear optics.
Aside from contributing to the security of quantum cryp-
tography [3], single photon sources are useful elsewhere,
for example, in schemes for quantum computation using
only linear optics and photodetection [4]. For some appli-
cations, it is enough to reduce the intensity of a laser source
to obtain single photons with a probability limited by the
Poisson distribution. To do better than Poisson statistics,
one requires some form of nonlinearity. However, when
one works in the single photon regime, a strong nonline-
arity is not so easy to find.

In semiconductor microcavities, light is strongly
coupled to quantum well excitons resulting in new quasi-
particles known as polaritons. Taking the best from both
parents, polaritons have attracted particular attention for
over a decade due to their strong nonlinearity (inherited
from excitons) as well as their fast dynamics, long coher-
ence, and ability to couple to external light (features of
photons). Polariton-polariton interactions have resulted in
micron-sized optical parametric oscillators [5–7], optical
gates [8], spontaneous coherence [9–11], low threshold
lasing at room temperature [12–14], and superfluidity
[15]. While these effects involve many polaritons at
once, we wish to focus on the single quantum regime. In
planar cavities, quantum effects such as squeezing have
been reported and several studies on quantum correlations
undertaken [16–19]. More pronounced effects at the single
polariton level are expected in quantum boxes [20–22],
where polaritons are fully confined in three dimensions and
forced to interact even more strongly. Available recently,
such confinement has encouraging prospects for single
photon sources.

It has been predicted that for a very strong nonlinearity,
the presence of a single polariton can block the resonant
injection of another [23], analogous to the photon blockade
[24] of nonlinear cavities. However, to obtain a strong
enough nonlinearity for a single photon source, an ex-

tremely small quantum box is required (with size of the
order of 200 nm). Although one may anticipate such a
system in the future, current systems do not display such a
strong nonlinearity—while high nonlinearity is present in
semiconductor microcavities, the energy shift caused by
two interacting polaritons remains small.
We consider theoretically two coupled quantum boxes

and show that the coupling can dramatically enhance the
characteristics of single photon devices. By solving the
quantum master equation for the density matrix, we find
strong single photon statistics for values of the polariton-
polariton interaction strength corresponding to today’s
systems. We show that this is due to correlations between
the quantum fluctuations in the two boxes, allowing a much
stronger sensitivity of the system to the population com-
pared to the single mode case. We expect that the coupling
under study can also be exploited in analogous systems
such as coupled nonlinear cavities or coupled photonic
crystal cavities [25]. Finally, we show how mode coupling
in parametric oscillators can also enhance single photon
statistics due to selection rules.
A pair of linearly coupled modes.—Consider a pair of

quantum modes described by creation operators, ây1 and

ây2 , respectively. As an example, we imagine the lowest

energy polariton modes of two spatially separated micro-
cavity quantum boxes. In each box, polariton-polariton
interactions are characterized by an interaction strength
�. The boxes are spatially separated such that there are
no significant nonlinear interactions between boxes.
However, the boxes are close enough together such that
particles can tunnel from one box to the other, at a rate
given by the tunneling constant J. The Hamiltonian is

Ĥ ¼ E1â
y
1 â1 þ E2â

y
2 â2 þ �ðây1 ây1 â1â1 þ ây2 â

y
2 â2â2Þ

� Jðây1 â2 þ ây2 â1Þ þ Fây1 þ F�â1; (1)

where E1 and E2 are the uncoupled energy levels of the two
quantum modes and F represents a coherent excitation of
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the first mode. With quantum boxes, this would be a laser
excitation focused onto the first quantum box. We define
our energy scale such that the pump energy is zero. The
evolution equation of the corresponding density matrix, �,
is

i@
d�

dt
¼ ½Ĥ ;�� þ i

�

2

X2
n¼1

ð2ân�âyn � âyn ân�� �âyn ânÞ;

(2)

where the last term represents the standard Lindblad dis-
sipation characterized by decay rate �. Equation (2) can be
solved by expanding the density matrix over a particle
number basis in a similar way to that done in Ref. [23];
one truncates at a given particle number and propagates in
time from the vacuum to the steady state [26].

For a pair of quantum boxes of 3 �m size, separated by
1 �m, a typical value of the tunnel constant is J ¼
0:5 meV. Since J > �, strong coupling takes place and
the single particle eigenmodes are the symmetric and anti-
symmetric modes spanning the two wells [27]. We take
� ¼ 0:012 meV, a value measured in Ref. [28] for con-
densed polaritons occupying spot sizes of �3 �m.
Although the pump acts directly on the first well, it effec-
tively pumps the second well due to an interference effect.
This can be understood by considering the Heisenberg
equations for the symmetric (âþ ¼ sin�â1 þ cos�â2)
and antisymmetric (â� ¼ cos�â1 � sin�â2) field opera-
tors, with eigenenergies Eþ and E�, respectively:

dâþ
dt

¼ Eþâþ þ F sin�;
dâ�
dt

¼ E�â� þ F cos�:

For E1 � E2, � � �=4, and in the steady state one finds
that â� ¼ F

E�
ffiffi
2

p . Since Eþ and E� have different signs, âþ
and â� are excited with different signs such that â2 is
excited instead of â1.

A key quantity in quantum optics is the second order
correlation function, defined as

g2;nmðt� t0Þ ¼ hâyn ðt0ÞâymðtÞâmðtÞânðt0Þi
hâyn ðt0Þânðt0ÞihâymðtÞâmðtÞi

: (3)

When n and m correspond to the same mode and t ¼ t0,
this quantity also measures the performance of a single
photon source; an ideal source has g2;nnð0Þ ¼ 0, while a

classical source has g2;nnð0Þ ¼ 1.
For fixed pump intensity, the dependence of g2;11ð0Þ on

the energy levels of the two wells is shown in Fig. 1(a). The
optimum (smallest) g2;11ð0Þ was attained when E1 ¼
0:07 meV and E2 ¼ 0:05 meV. The g2;11ð0Þ depends

mostly on the energy of the second well, E2, and this
variation is shown again in Fig. 1(b) along with the varia-
tion of g2;22ð0Þ, and the average well populations, hN1i and
hN2i, respectively. Unlike in Fig. 1(a), the pump energy is
also varied to maintain a constant detuning between the

pump and the lowest energy (symmetric) single particle
eigenstate. This allows a better test of the variation of E2

since the average populations do not change drastically and
reveals that while the second well has g2;22ð0Þ � 1, varying
E2 has a dramatic effect on g2;11ð0Þ.
Utilizing the first well as a single photon source, one

finds that at a pump amplitude giving hN1i ¼ 0:02 the
probability of having more than one photon is 0.18%;
this is 5 times better than the failure rate of devices based
on spontaneous parametric down-conversion [1]. Spectral
filtering could further reduce emission from the n1 � 2
states, providing extra improvement. Figure 1(c) shows the
unequal time second order correlation functions [23],
which oscillate at half the Rabi oscillation period arising
from the J ¼ 0:5 meV coupling.
To better understand the low value of g2;11ð0Þ, we carried

out analytical calculations, extending the method of
Ref. [29], which applies directly to the single mode case.
We use stochastic (Langevin-type) equations for the evo-
lution of quantum fields [30]. Lowest-order fluctuations of
the fields around their mean values can be found by solving
the linearized (ân � �an þ �an) version of the equations
[26]. Choosing the convention that �a1 is real, the 2nd order
correlation can be written [30]:

g2;11 ¼ 1þ 2

n1
½h�a�1�a1i þ <efh�a1�a1ig� (4)

which yields [26]
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FIG. 1 (color online). (a) Variation of g2;11ð0Þ with E1 and E2.
(b) Dependence of the equal time correlation function and
average populations on E2 for E1 ¼ 0:07 meV. (c) g2;11ðtÞ for
the optimum parameters from (a). (d) g2;11ð0Þ from Eq. (5) (solid

line) and comparison to the single mode case (dotted line). In all
panels � ¼ 0:2 meV and in (a–c) F ¼ 0:1 meV.
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g2;11 ¼ 1þ 2

n1
½h���

1��1i� � 2�

ðE1 þ 4�n1Þð1þ �2Þ
þ 2J<efh�a1�a2ig

n1ðE1 þ 4�n1Þð1þ �2Þ
� 2�J=mfh�a1�a2ig

n1ðE1 þ 4�n1Þð1þ �2Þ ; (5)

where � ¼ �=ð2ðE1 þ 4�n1ÞÞ. The mean field values, �a1,
can be obtained as in Ref. [27]. To calculate all second
order correlations, we have extended the method of
Ref. [31]. In Fig. 1(d), we compare the result of Eq. (5)
for the two mode (solid line) and single mode (dotted line)
cases. The single mode value is obtained by setting J ¼ 0
and matches the result from Ref. [29]. For parameters cor-
responding to the optimum g2;11, the last term in Eq. (5)

makes a strong negative contribution [26]. In other words,
the correlated noise fluctuations h�a1�a2i drive the low
value of g2;11. These correlations are a result of the inter-

play between nonlinearity (in the limit � � 0,
h�a1�a2i � 0) and tunnelling. This is a very different
mechanism from the polariton blockade [29], which origi-
nates from the third term in Eq. (5) that vanishes in the
present regime where �n1;2 � �.

For pioneering experiments, one may also consider re-
placing the coupled quantum box modes by the circularly
polarized spin modes of a single quantum box or a local-
ized state in a planar microcavity. Magnetic fields parallel
and perpendicular to the growth direction would allow the
tuning of the spin energy levels (as suggested as a control
method of the original polariton blockade [32]) and the
coupling constant J, respectively.

Parametrically coupled modes.—Given the attention de-
voted to parametric processes in microcavities at the be-
ginning of the millennium [5–7], it is only natural for us to
ask whether sub-Poisson statistics can also be derived from
pair scattering processes. Again, a variety of systems can
be imagined, including the eigenmodes of a localized
quantum box [33]. The Hamiltonian now includes three

separate modes characterized by creation operators ây1 , â
y
2 ,

and ây3 , respectively:

Ĥ ¼ X3
n¼1

�
Enâ

y
n ân þ �âyn âyn ânân þ 2�

X
m�n

âyn âymânâm
�

þ 2�ðây1 ây3 â2â2 þ ây2 â
y
2 â1â3Þ þ Fây2 þ F�â2:

(6)

The scattering terms represent the same selection rules as
when one deals with a pump mode that can scatter in pairs
to signal and idler modes, as in intrabranch [5,6] and
interbranch [7] scattering in planar microcavities. The
Hamiltonian can be diagonalized on a number state mani-
fold in the absence of the pump terms. The energy levels
are shown in Fig. 2. The only state in the n1 ¼ 2 manifold
that can pollute the value of g2;11ð0Þ is the lowest lying

j200i state. An analysis of the allowed transitions shows
that this state can only be reached from decay of an n1 ¼ 3
state. In the low occupation limit the system is not expected
to visit the n1 ¼ 3 manifold very frequently, leading us to
expect a low value of g2;11ð0Þ.
Using a similar evolution equation to Eq. (2), g2;11ð0Þ is

calculated in Fig. 3(a) for different values of the energy
levels, E2 and E3. A study varying also E1, showed that the
optimum parameters are for the case when the pumped
mode is at an energy slightly higher than the pump energy,
E2 ¼ 0:12 meV and the sum of the signal and idler mode
energies is resonant with the pump [see Fig. 3(b)]. In fact
g2;11ð0Þ is found only to vary if E1 þ E3 is changed, that is,

a selection of values of E1 and E3 can be used to obtain
optimum results.
The time dependent second order correlation is shown in

Fig. 3(c). For zero delay we obtain g2;11ð0Þ ¼ 0:28. It is
important to remember that we are working with a value of
the polariton-polariton interaction strength available in two
dimensional planar cavities [28]; much lower values of
g2;11ð0Þ would appear in more confined systems in which

the strength of interactions is higher.
For comparison, the second order coherence function is

shown in Fig. 3(d) for three cases using the same value of
the interaction strength: the single mode polariton block-
ade [23], the two coupled well case (studied in the previous
section), and the case of three parametrically coupled
modes. It is clear that the use of schemes involving two
or three coupled modes can give statistics closer to that of a
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FIG. 2. Eigenstates from the diagonalization of the
Hamiltonian Eq. (6) without the pump terms on the particle
number manifold. Parameters: E1 ¼ 0 meV, E1 ¼ 0:12 meV,
E2 ¼ 0 meV, � ¼ 0:012 meV, � ¼ 0:1 meV. The transitions
caused by optical pumping and decay are shown by the solid
and dashed arrows, respectively.
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single photon device than the single mode case. While in
all schemes, the value of g2;11ð0Þ decreases with the aver-

age population of the signal mode, for the single mode and
three mode case g2;11ð0Þ tends to a constant value as hNi is
decreased.

Finally, we have considered the effect of pure dephasing
(associated with exciton-phonon scattering) by adding the
term

�P

2

X
n

ð2âyn ân�âyn ân � âyn ânâ
y
n ân�� �âyn ânâ

y
n ânÞ (7)

to the right-hand side of Eq. (2). Taking �P ¼ 0:3 �eV (an
upper estimate of the dephasing from Ref. [34]) gives the
dashed curves shown in Fig. 3(d).

Conclusion.—We considered the use of a pair of coupled
quantum boxes as a single photon source. We present the
general idea that coupling can dramatically improve the
single photon statistics compared to the single mode case,
through noise correlations. With competitive characteris-
tics, one may choose quantum boxes in a solid-state sys-
tem, which offers fast (picosecond scale) relaxation rates,
compact size, emission into a well-defined spatial mode (a
luxury not always present when working with quantum
dots), and wavelengths compatible with transmission
through silica fibers and photodetection with silicon based
photon counters. Alternatively, one may consider coupling
nonlinear cavities or using parametrically coupled modes

in planar microcavities. Indeed we anticipate more studies
specific to each system and experimental verifications. The
nonlinearity is available with our present technology and
we have several paths to choose from.
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FIG. 3 (color online). (a) Variation of g2;11ð0Þ with E2 and E3

for E1 ¼ 0, F ¼ 0:1 meV. (b) The optimum energy levels.
(c) g2;11 for the optimum parameters. Other parameters: � ¼
0:1 meV, � ¼ 0:012 meV. (d) Comparison of the g2;11ð0Þ avail-
able from the single mode polariton blockade (with pump
resonant with the bare mode energy), the two coupled mode
case (from Fig. 1) and the three parametrically coupled modes.
g2;11ð0Þ is plotted as a function of the average occupation number

of the signal mode. Dashed curves show the effect of dephasing.
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