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The helium pair potential was computed including relativistic and quantum electrodynamics contri-

butions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large

distances R. Error estimates show that the present potential is more accurate than any published to date.

The computed dissociation energy and the average R for the 4He2 bound state are 1:62� 0:03 mK and

47:1� 0:5 �A. These values can be compared with the measured ones: 1:1þ0:3
�0:2 mK and 52� 4 �A [R. E.

Grisenti et al., Phys. Rev. Lett. 85, 2284 (2000)].
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The pair potential for helium represents the simplest,
prototypical interaction potential for dispersion bound sys-
tems. Its knowledge is of importance in several branches of
science, e.g., in low-temperature condensed matter physics
[1], spectroscopy [2,3], and metrology [4–6]. In the latter
case, purely theoretical first-principle predictions of prop-
erties of helium are replacing experimental data and allow
creation of more accurate measurement standards for quan-
tities such as temperature or pressure. One more reason for
interest in the helium potential is the existence of an
unusually large and very weakly bound state of the helium
dimer [7]. The size of this dimer was found to be signifi-
cantly affected [8,9] by the Casimir-Polder (CP) retarda-
tion effect [10]. All of this poses challenging accuracy
demands for theory.

The determination of the nonrelativistic Born-
Oppenheimer (BO) potential for helium, VBO, has been
the subject of extensive activity reviewed in Refs. [9,11].
At the equilibrium distance Re, VBO is known [12] with an
estimated uncertainty of 0.2 mK or 2 parts per 105, but for
some interatomic distances R the relative uncertainties are
an order of magnitude larger [9]. Whereas such uncertain-
ties are small enough for current metrology purposes, the
expected magnitudes of the post-VBO contributions are too
large to be a priori neglected for such purposes [4–6].

The main post-VBO physical effects are the leading order
coupling of the electronic and nuclear motion, i.e., the
adiabatic correction, relativity, and quantum electrody-
namics (QED). The adiabatic correction, VadðRÞ, has
been computed in Ref. [13] using 4-electron explicitly
correlated Gaussian (ECG) wave functions and recom-
puted in Ref. [11] using an orbital approach, with results
different by as much as 42% at Re. The relativistic correc-
tion of the order �2, where � ¼ 1=137:036 is the fine
structure constant, has been computed accurately in
Ref. [14] but only for Re. It has been computed for a range
of R in Ref. [11], but only in the so-called Cowan-Griffin
approximation which for Re is very inaccurate [14]. A part

of the QED correction of the order �3 is accounted for
using CP theory, but other �3 QED terms have been
calculated thus far only for Re [15]. Clearly, the knowledge
of the post-VBO terms is far from satisfactory.
In this Letter, we present accurate calculations of the

complete �2 and �3 contributions [denoted by VrelðRÞ and
VQEDðRÞ, respectively], as well as recalculations of VadðRÞ,
for 17 R’s from 1 to 12 bohr. Our main goal was to obtain
the potential

VðRÞ ¼ VBOðRÞ þ VadðRÞ þ VrelðRÞ þ VQEDðRÞ (1)

to within a few parts per 104. To ensure high accuracy for
R> 12 bohr, we evaluated the constants determining the
asymptotic behavior of all terms in Eq. (1). The CP terms
not included in Eq. (1), denoted later as VretðRÞ, are very
small but can optionally be added to VðRÞ.
All components of VðRÞ were obtained using the super-

molecular approach, i.e., by computing the difference

�Y ¼ �hŶi ¼ hc j Ŷc i � 2hc 0 j Ŷ0c 0i; (2)

where Ŷ is the operator corresponding to a particular

correction, Ŷ0 is the atomic part of Ŷ, c and c 0 are
electronic wave functions for He2 and He, respectively,
both computed in the clamped-nuclei approximation. By

replacing Ŷ by appropriate operators, one gets the consecu-

tive post-VBO terms in Eq. (1): Vad when Ŷ is the operator

of the kinetic energy of nuclei, Vrel when Ŷ is the Breit-

Pauli Hamiltonian, and VQED when Ŷ is the operator given

in Eq. (2) from Ref. [15]. Vrel is a sum of components given

by the one- and two-electron Darwin operators D̂1 and D̂2,

the mass-velocity operator Ĥ1, and the Breit operator Ĥ2

(using the notation of Ref. [16]; see also Ref. [14]). Wewill
denote the latter two components as VmvðRÞ and VBreitðRÞ,
respectively. VQED can be expressed [15] as an appropriate

linear combination of �hD̂1i, �hD̂2i, and of the so-called

Araki-Sucher (AS) contribution [17] obtained when Ŷ is
replaced by
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Ĥ AS ¼ � 7�3

6�

X4
i<j

Pðr�3
ij Þ; (3)

where Pðr�3
ij Þ is the distribution defined, e.g., in Ref. [15]

and atomic units are used here and in formulas given
below. This procedure is an approximation since the R
dependence of the Bethe logarithm, ln k0, is neglected
and the atomic value, equal to 4.370 160 222 0(1) [18], is
used. The accuracy of this approximation was recently
tested [19] for H2, where it is more severe, but changes
the one-electron part of the QED contribution to the equi-
librium depth by less than 2%. For He2, this one-electron
part gives only about 0.25 mK contribution [15] to VQED at

Re. Thus, forHe2 the use of R-dependent ln k0 would make
a negligible, �K level contribution.

We have performed calculations with ECG and orbital
basis sets for all R. The latter basis can give more accu-
rate results for large R since it allows for the removal of
basis set superposition errors. The ECG and the full
configuration-interaction (FCI) orbital results are mutually
consistent for allR in the sense that their error bars overlap.
Thus, for our recommended potential displayed in Table I
(see [20] for results at other distances), we have chosen the
ECG results at small R and the orbital ones for large R,
using the smaller error bars criterion. Only the AS term
was computed using ECG bases for all R.

In the ECG approach, we used nearly exact values of

hc 0 j Ŷ0c 0i taken from literature [21]. The ECG values of
Vad were obtained following the method of Ref. [13], i.e.,
by numerically performing the differentiation with respect
to nuclear coordinates, but we used larger and better opti-

mized basis sets. The expectation value of Ĥ2 converges
fast to its limit and therefore it was evaluated directly. The
remaining three operators in the Breit-Pauli Hamiltonian as

well as ĤAS are highly singular and their expectation
values converge very slowly. These values were therefore
evaluated employing the integral-transform techniques of
Refs. [14,15,22]. To enable basis set extrapolation and
estimation of uncertainties, the ECG calculations were
performed using bases containing 300, 600, 1200, and
2400 ECG functions. The uncertainties were determined

mainly by the difference between the results of calcula-
tions with two largest basis sets.
In the calculations employing the orbital basis, we used

a two-step procedure: �Y ¼ �YCCSDðTÞ þ �YFCI, where

�YCCSDðTÞ is the contribution computed using the
coupled-cluster method with single, double, and noniter-

ative triple excitations [CCSD(T)] and �YFCI ¼ �YFCI �
�YCCSDðTÞ. The FCI term was calculated with basis sets
significantly smaller that those used for the CCSD(T) term.
The CCSD(T) expectation values were obtained using
linear response theory. We used doubly augmented
Gaussian basis sets (denoted by dXZ) of the triple- to
septuple-zeta quality, X ¼ 3; . . . ; 7, with exponents opti-
mized in Ref. [23] on the FCI energy of helium atom and
on the van der Waals constants through C16. In relativistic
calculations, the basis sets were completely uncontracted.
The final CCSD(T) results were obtained using the d6Z
and d7Z basis sets and the complete basis set extrapolation
with the two-point formula �YðXÞ ¼ �Yð1Þ þ AX�n,
where �YðXÞ is the value obtained for the cardinal number
X and A is a constant. Following Ref. [24] and based on
comparisons with ECG calculations for small R, we used
n ¼ 1 for all relativistic terms except for VBreit where we
assumed that n ¼ 1:5. The absolute difference between the
complete basis set extrapolated and the d7Z results was
taken as the uncertainty of �Yð1Þ. The values of �YFCI

were computed with the d4Z and d5Z basis sets. These
values were not extrapolated, because the basis set con-
vergence pattern was not well established in this case.
Instead, the X ¼ 5 result was assumed as the final one
and the absolute difference between the X ¼ 5 and X ¼ 4
results as its uncertainty.
The adiabatic correction was determined slightly differ-

ently, using the FCI level of theory only, Vad ¼ �YFCI, and
numerical differentiation with respect to nuclear coordi-
nates, as in Ref. [25]. This procedure is computationally
demanding, so only d3Z and d4Z basis sets could be used
in this case. The results were extrapolated using the two-
point formula with the exponent n ¼ 3. The absolute dif-
ference between the extrapolated and d4Z results was
assumed as the uncertainty of Vad. The relative errors of
the adiabatic, relativistic, and QED corrections are smaller

TABLE I. Components of the 4He-4He potential (in kelvin ¼ 1=315 774:65 hartree, R in bohr ¼ a0 ¼ 0:529 177 �A). The total
squared uncertainty of V was computed by summing squares of the partial uncertainties (in parentheses). VBO is from Ref. [12] (R ¼
5:6) and [9] (other R’s).

R VBO Vad Vrel VQED V Vret Ref. [11]

3.0 3767.681(71) 1.387(7) �0:2197ð23Þ 0.0942(2) 3768.94(7) 0.000 45 3768.146

4.0 292.570(15) 0.1080(32) 0.0324(14) 0.0089(2) 292.719(15) 0.000 25 292.6337

5.0 �0:4754ð65Þ �0:0075ð13Þ 0.0240(2) �0:001 06ð4Þ �0:460ð7Þ 0.000 15 �0:4774
5.6 �11:0006ð2Þ �0:0090ð5Þ 0.015 40(4) �0:001 35ð2Þ �10:9955ð5Þ 0.000 12 �11:0085
6.0 �9:6819ð23Þ �0:0072ð3Þ 0.011 43(5) �0:001 20ð4Þ �9:6788ð23Þ 0.000 10 �9:6869
7.0 �4:6225ð6Þ �0:003 33ð7Þ 0.005 77(3) �0:000 74ð3Þ �4:6208ð6Þ 0.000 07 �4:6257

12.0 �0:165 92ð2Þ �0:000 125ð1Þ 0.000 575(2) �0:000 13ð3Þ �0:165 60ð3Þ 0.000 02
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than 1%, except obviously near R where a given correction
vanishes, and for the adiabatic correction at large R, where
relative errors are of the order of 1%. The CCSD(T) and
FCI calculations were carried out using the DALTON [26]
and LUCIA [27] programs.

To ensure the correct asymptotic behavior of the poten-
tial, we evaluated the constants Cn determining the leading
terms in the 1=Rn expansion of the post-VBO contributions.

For Vad, Vmv, �hD̂1i, and �hD̂2i, we considered n ¼ 6, 8,
and 10. The determination of Cn for Vad was described in
Ref. [28]. The evaluation of Cn for the remaining terms is
straightforward [29], and was done with basis d8Z. For

�hD̂1i and Vmv, our values of Cn are consistent with the
literature ones [30]. For VBreit, we computed only the first
two constants C4 and C6, obtaining �3:5322� 10�5 a:u:
and �1:894� 10�4 a:u:, respectively. Our value of C4

agrees within 0.06% with the literature value [31]. The

contribution to C6 from the interatomic part of Ĥ2 amounts
to �1:387 � 10�4 a:u: and was computed using an appro-
priate generalization of the method employed for H2 in
Ref. [19]. The AS term behaves asymptotically as
�C3=R

3 � C5=R
5 where C3 ¼ 14�3=ð3�Þ and C5 ¼

28�3hr2i=ð3�Þ, with hr2i denoting the average square of
the electron-nucleus distance in helium atom. The values
of Cn are given in [20].

The computed values of VðRÞ were fitted to an analytic
function

e�aR
X2
i¼0

PiR
i þ e�bR

X1
i¼0

QiR
i � X16

n¼3

fnð�RÞCn

Rn ; (4)

where fnðxÞ ¼ 1� e�xð1þ xþ x2=2!þ � � � þ xn=n!Þ is
the Tang-Toennies [32] damping function, Cn are fixed,
and a, b, �, Pi, and Qi are adjustable parameters. The
constants C7 and C9 were neglected. We used the inverse
squares of the uncertainties � as the weighting factors. The
parameters are listed in [20]. The maximum and average
errors of the fit are 1:07� and 0:33�, respectively.

To account for the long-range retardation damping, we
computed the CP potential

VCPðRÞ ¼ � 1

�R6

Z 1

0
�dði!Þ2e�2�R!Pð�R!Þd!; (5)

where PðxÞ ¼ x4 þ 2x3 þ 5x2 þ 6xþ 3 and �dði!Þ is the
dipole polarizability of helium at imaginary frequency i!.
We fitted VCPðRÞ with the rational function
�CBO

6 R�6gð�RÞ, where CBO
6 is the van der Waals constant

C6 computed at the (nonrelativistic) BO level of theory and

gðxÞ ¼
�
1þ X5

n¼1

Anx
n

���
1þ X6

n¼1

Bnx
n

�
: (6)

Only the Bn parameters were free in the least-square
optimization. The An coefficients were fixed by requiring
the correct small and large x behavior of gðxÞ: A1 ¼ B1,
A2 ¼ B2 þ C4=ð�2CBO

6 Þ, A3 ¼ B3 þ B1C4=ð�2CBO
6 Þ þ

C3=ð�3CBO
6 Þ, A4 ¼ �B5K7=C

BO
6 , and A5 ¼ �B6K7=C

BO
6 ,

where K7 ¼ 23�2
dð0Þ=ð4��Þ. The first three of these con-

ditions guarantee that [33]

VCPðRÞ ¼ �CBO
6 R�6 � C4R

�4 � C3R
�3 þOð�4Þ (7)

at R � a0=� and the last two that VCPðRÞ ¼ �K7R
�7 þ

OðR�9Þ at large R [10]. Equation (7) shows that at short
range VCPðRÞ includes �0, �2, and �3 terms which are
already present in our potential, as well as �4 and higher
terms, which we have neglected so far. Therefore the
(additive) retardation correction appropriate for our poten-
tial is

VretðRÞ ¼ VCPðRÞ þ CBO
6 R�6 þ C4R

�4 þ C3R
�3; (8)

where the last three terms, with the constants exactly the
same as those in Eq. (4), eliminate the double counting.
This correction, listed in Table I, removes the unphysical
R�3 and R�4 long-range contributions from the potential.
Being of the fourth order in � at short range, VretðRÞ is
virtually negligible for all distances shown in Table I.
It should be pointed out that the addition of VretðRÞ does

not eliminate all unphysical long-range terms from our
potential. The R�5 QED term and the R�6 relativistic
term can be eliminated using the relativistic generalization
of the CP theory proposed recently by Pachucki [34].
However, we are not aware of any rigorous procedure
allowing the elimination of the R�6 QED term and the
R�6 adiabatic term. We applied an ad hoc procedure of
damping the R�5 and R�6 terms by multiplying them with
g2ð�RÞ and gð�RÞ, respectively, where gðxÞ is given by
Eq. (6). This damping had a negligible effect on the ob-
servables discussed below.
In Table I, we compare our potential with the theoretical

determination from Ref. [11] which also included several
post-VBO contributions. The quoted values are not cor-
rected for retardation effects and should be compared
with our VðRÞ. In the region of the well and for larger R,
the discrepancies are a few times larger than the uncertain-
ties of our potential, and only at R ¼ 1 bohr are within our
error bars. These discrepancies are consistent with the
expected effects from basis set improvements in our cal-
culations as well as from the complete inclusion of the �2

and �3 terms in our potential.
The computed properties of the helium dimer are shown

in Table II. The retardation corrections included are, of
course, different at different levels of theory. The atomic
masses were used in solving the radial Schrödinger equa-
tion. The use of nuclear masses would decrease the disso-
ciation energyD0 by 0.030 mK and increase hRi by 0.42 Å.
However, in view of the results of Ref. [35], the use of
nuclear masses is unjustified for systems as large as the
helium dimer. OurD0 and hRi differ from the experimental
values [7] by 1.7 and 1.2 times the experimental uncertain-
ties, respectively. A measurement with tighter error bars
would provide an important check of theory. The possible
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improvements on theoretical side are inclusions of higher
order QED and nonadiabatic effects (the further improve-
ments in accuracy of included terms are already accounted
for by our error bars). The main �4 QED contribution is
the so-called one-loop correction, considered, e.g., in

Ref. [36]. It can be expressed via �hD̂1i, and we checked
that its effect on dimer properties is negligible. So is the
effect of finite size of the helium nucleus, also expressible

through �hD̂1i. The value of missing nonadiabatic correc-
tion is difficult to estimate reliably. In view of the results
obtained forH2 (see Fig. 2 in Ref. [35]), we expect that it is
at least several times smaller than the effect of using the
atomic mass, which we already included. Thus, our current
error bars likely incorporate also the uncertainties resulting
from the theory truncation. The accuracy achieved should
be sufficient for metrology needs [4,5] in the foreseeable
future.
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