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We perform coupled-cluster calculations of the energies and lifetimes of single-particle states around

the doubly magic nucleus 16O based on chiral nucleon-nucleon interactions at next-to-next-to-next-to-

leading order. To incorporate effects from the scattering continuum, we employ a Gamow-Hartree-Fock

basis. Our calculations for the J� ¼ 1=2þ proton halo state in 17F and the 1=2þ state in 17O agree well

with experiment, while the calculated spin-orbit splitting between 5=2þ and 3=2þ states is too small due

to the lack of three-nucleon forces. Continuum effects yield a significant amount of additional binding

energy for the 1=2þ and 3=2þ states in 17O and 17F.
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Introduction.—Halo nuclei [1], i.e., very fragile nuclear
systems with a halo consisting of one or more weakly
bound nucleons, are fascinating objects. Atomic nuclei
with halo ground states exist at the fringes of nuclear
existence close to the drip lines. Well-known examples
are the two-neutron halo nuclei 6He, and 11Li, the proton
halo nucleus 8B, and the two-proton halo nucleus 17Ne; see
Ref. [2] for a recent review. Halo states can also exist as
excited states of nuclei with well-bound ground states.
Halo nuclei are difficult to study experimentally due to
their feeble nature and the often small production cross
sections. They also provide theory with a formidable chal-
lenge since the proximity of the continuum introduces a
very large number of degrees of freedom. In recent years,
several theoretical approaches have been implemented and
developed that include continuum effects and enable the-
orists to describe weakly bound states, nuclear halos, and
unbound resonances [3–7].

The A ¼ 17 neighbors around 16O are particularly inter-
esting and significant nuclei. First, the 5=2þ and 1=2þ
states in 17F are bound by only 600 and 105 keV, respec-
tively, making the latter a proton halo state. This state
and astrophysically relevant reactions such as the
17Fðp; �Þ18Ne reaction [8] have been understood within
the shell model embedded in the continuum [3], but an
ab initio description is not yet available. Second, the
ground and excited states in 17F and 17O determine the
single-particle energies of proton and neutron states with
respect to the doubly magic nucleus 16O, respectively.
These energies are basic ingredients of the nuclear shell
model, and they are also key for the understanding of the
evolution of shell structure in the fluorine and oxygen
isotopes [9]. Recent theoretical efforts aim at ab initio
shell-model calculations with a core for sd-shell nuclei
[10]. The ab initio computation of single-particle energies
in 17O and 17F is one necessary ingredient for such an
approach. Finally, the ab initio approach to the proton halo

state in 17F and the 3=2þ resonances in 17O and 17F
provides us with an ambitious testing ground for the em-
ployed method, the high-precision potentials, and the role
of three-nucleon forces.
In this Letter, we present an ab initio calculation of low-

lying states of the mirror nuclei 17O and 17F. The coupled-
cluster method [11] is ideally suited for this endeavor. It is
a most efficient approximation for the computation of
ground states of doubly magic nuclei, and states with
dominant single-particle character in odd-mass neighbors
can be computed with equation-of-motion techniques [12].
For the inclusion of continuum effects, we employ the
Berggren [13] single-particle basis of the Gamow shell
model [4]; i.e., the model space consists of bound, reso-
nant, and continuum scattering states. We employ the
chiral nucleon-nucleon interaction at next-to-next-to-
next-to leading order (N3LO) by Machleidt and Entem
[14].
Interaction and model space.—We employ the intrinsic

nuclear Hamiltonian

Ĥ ¼ T̂ � T̂cm þ V̂ ¼ X

1�i<j�A

ð ~pi � ~pjÞ2
2mA

þ V̂: (1)

Here, T and Tcm denote the kinetic energy and the kinetic
energy of the center-of-mass coordinate, respectively, and
V denotes nucleon-nucleon interaction [14] at N3LO. This
interaction has a momentum cutoff of �� ¼ 500 MeV �
2:5 fm�1. However, due to the smooth nature of the cutoff
we integrate up to 8 fm�1 in the computation of matrix
elements.
As some of the states we seek to compute are resonances

or loosely bound halo states, we need to take into account
continuum effects. For this purpose we use a Berggren
representation [13] for the proton and neutron s1=2, d3=2,
and d5=2 partial waves. The Berggren representation is a

generalization of the usual completeness relation to the
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complex energy plane, so that bound, resonant, and non-
resonant continuum states are treated on an equal footing.
The Berggren ensemble has been successfully used within
the Gamow shell model [4] (see Ref. [15] for a recent
review), and in ab initio coupled-cluster calculations of
energies and lifetimes of the helium isotopes [16]. In
constructing the single-particle Berggren basis, we follow
Ref. [17]. We diagonalize a one-body Hamiltonian with a
spherical Woods-Saxon potential in a spherical-wave basis
defined on a discretized contour Lþ

2 in the complex mo-

mentum plane. We employ a total of 30 Gauss-Legendre
mesh points along the contour for each of the s1=2, d3=2, and

d5=2 partial waves. Our converged calculations are inde-

pendent of the choice of contour, and we checked that 30
mesh points is sufficient to reach satisfactory converged
results for the calculated energies and lifetimes of the states
we consider in this work. For all other partial waves, the
basis functions are those of the spherical harmonic
oscillator.

Method.—The computation of the energy spectra in 17O
and 17F relative to the ground state of 16O is as follows.
First, we employ the intrinsic Hamiltonian (1) and compute
the ground-state energy E0 of 16O. This yields a precise
reference value for the computation of energy differences.
In the second step, we compute the ground-state energy E�

0

and corresponding cluster amplitudes for a ‘‘mass-shifted’’
nucleus 16O, where the mass shift m ! m0 ¼ mðAþ 1Þ=A
in the intrinsic Hamiltonian (1) ensures that the correct
kinetic energy of the center of mass is utilized in the third
step. In the third step, we act with an effective one-particle
creation operator (consisting of superpositions of one-
particle and two-particle-one-hole operators) onto the
mass-shifted ground-state of 16O. This yields the energies
E� ¼ E�

0 þ!� of the states with spin and parity � ¼
1=2þ, 3=2þ, 5=2þ in the A ¼ 17 nucleus of interest. The
difference between these energies and the ground-state

energy of 16O is the ‘‘single-particle’’ energies Eð�Þ
sp , i.e.,

Eð�Þ
sp ¼ !� þ E�

0 � E0.

In coupled-cluster theory [11,18,19], one computes the
similarity-transformed Hamiltonian �H ¼ e�THeT for the
closed-shell nucleus 16O. Here, T ¼ P

A
k¼1 Tk is a sum of

k-particle k-hole (kp-kh) cluster operators Tk ¼ ðk!Þ�2 �
Q

k
�¼1

P
i�a�

ta1...aki1...ik
âya1 . . . â

y
ak âik . . . âi1 , which are defined

with respect to the Hartree-Fock reference state j�0i.
Here and in what follows, the labels i; j; k; . . .
(a; b; c; . . . ) denote occupied (unoccupied) single-particle

orbitals. The operators âp (âyp) annihilate (create) a fer-

mion in orbital p. In the coupled-cluster singles-doubles
(CCSD) approximation, we truncate the cluster expansion
by setting Ta ¼ 0 for a > 2. The triples cluster T3 can be
treated perturbatively by employing the eigenstates of �H.
We employ this �CCSDðTÞ technique [20] for our triples
approximation. The unknown cluster amplitudes tai and t

ab
ij

are determined from the condition that the similarity-

transformed Hamiltonian �H has no 1p-1h excitations and
no 2p-2h excitations, respectively, from its Hartree-Fock
reference state. The ground-state energy is the expectation
value of �H in the Hartree-Fock reference, with small
corrections due to the approximate inclusion of triples
added. This approach is used for the computation of the
ground-state energies E0 and E�

0 of 16O and the ‘‘mass-

shifted’’ 16O, respectively. We employ the coupled-cluster
method in an angular-momentum coupled scheme [21,22]
to treat ‘‘bare’’ interactions in large model spaces.
We wish to study the low-lying states in 17O and 17F.

These nuclei differ by an additional neutron or proton from
the doubly magic 16O. The A ¼ 17 states that exhibit a
dominant single-particle character can be obtained from
the ground state of the ‘‘mass-shifted’’ 16O by action of the
excitation operator

R� ¼ X

a

raaya þ 1

2

X

abj

rabj ayaaybaj: (2)

Here, � denotes the parity, spin, and isospin projection of
the state we seek to compute, and it is understood that the
annihilation and creation operators on the right-hand side
of Eq. (2) are coupled to �. The unknowns ra and rabj , and

the excitation energies !� relative to the ground-state

energy of the mass-shifted 16O are obtained from solving
the eigenvalue problem ½ �H;R��j�0i ¼ !�R�j�0i; i.e.,

we seek eigenstates of �H that are simple excitations (2)
of the 16O ground state. This is the particle-attached
equation-of-motion method with singles and doubles ex-
citations [19,23].
Results.—We perform a Hartree-Fock (HF) calculation

for 16O and obtain the reference state j�0i. In order to
assess the role of the scattering continuum, we employ a
Hartree-Fock basis derived from a harmonic oscillator
basis (OHF) and the Gamow-Hartree-Fock (GHF) basis
[15] derived from the Woods-Saxon Berggren basis. For
well-bound nuclei such as 16O, the coupling to the con-
tinuum is negligible. The ground-state energy of 16O dif-
fers by less than 1 keV in the OHF and GHF basis within
both the CCSD and the triples approximation. We find
well-converged results for the ground state of 16O in 15
major oscillator shells, and the energy varies by less than
0.5 MeV for 26 MeV � @! � 36 MeV. (See Refs. [21,22]
for convergence details.) At the energy minimum @! ¼
34 MeV, the ground-state energy of 16O is�107:6 MeV in
the CCSD, and �120:9 MeV in the triples approximation.
Figure 1 shows the energies Esp of the 1=2

þ, 3=2þ, and
5=2þ states in 17F relative to the ground state of 16O as a
function of @!. The model space consists of 17 major
oscillator shells, in addition to 30 Woods-Saxon
Berggren states for each of the s1=2, d3=2, and d5=2 partial
waves. The results obtained in the GHF basis exhibit a very
weak dependence on the oscillator frequency while this
dependence is stronger for the OHF basis. In particular, the
energies of the 3=2þ and 1=2þ states increase with increas-
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ing frequency of the model space in the OHF basis. The
3=2þ states in 17O and 17F are well-known resonances, and
cannot be described appropriately in an oscillator basis.
The 5=2þ states exhibit a weaker dependence on @! as
their localization inside the l ¼ 2 centrifugal barrier re-
duces the coupling to the external scattering continuum.

The coupling to the scattering continuum has a signifi-
cant effect on the 1=2þ and 3=2þ states of 17F and 17O. Our
calculations in the GHF basis yield an increase of
�1:0 MeV in binding energy for these states compared
to our calculations in the OHF basis. The effect is particu-
larly strong for the 1=2þ proton halo state in 17F, a state
which is not even bound in the OHF basis. Similar con-
tinuum coupling effects were found for the 1=2þ halo state
in 11Be [7] and in the low-lying states of the fluorine and
oxygen isotopes [3,24]. The lack of a centrifugal barrier
and the very weak binding yield a proton halo (with a root-
mean-square radius of rrms ¼ 5:333 fm [25]) that is diffi-
cult to capture in the oscillator basis. Our calculated bind-
ing energy for this state agrees remarkably well with the
experimental value of 105 keV. This finding deserves
further analysis, and we need to estimate the effects of
the omitted three-nucleon forces.

Within chiral effective field theory, the leading three-
nucleon forces consist of a long-range two-pion exchange,
a midrange one-pion exchange, and a short-range three-
nucleon contact interaction [26]. Three-nucleon forces are
expected to yield additional binding of the order of
0.5 MeV per nucleon [22]. The effect of three-nucleon
forces on energy differences is more subtle. Within a
calculation based on two-nucleon forces we can, however,
probe the effect of the three-body contact by a variation of
the ultraviolet cutoff �. Decreasing the cutoff employed in
the construction of the chiral interactions renormalizes the

two-nucleon interaction and generates short-ranged three-
nucleon forces [27]. We employ the similarity renormal-
ization group (SRG) [28] for the generation of interactions
with a cutoff �, and study the evolution of the excited states
in 17F as the cutoff is varied. Figure 2 shows that the spin-
orbit splitting between the 3=2þ and 5=2þ states increases
with decreasing cutoff. Interactions with a high momentum
cutoff are known to yield a reduced spin-orbit splitting
[29], but it is difficult to disentangle continuum and inter-
action effects [24]. However, the 1=2þ state remains vir-
tually unchanged as the cutoff is lowered to � � 3:2 fm�1.
This is not unexpected since the structure of the dilute
1=2þ halo state is dominated by long-ranged forces, and
the SRG interactions only change the short-range contri-
butions. Thus, our result for the proton halo state in 17F is
insensitive to short-range three-nucleon forces.
Let us also comment on the center of mass.

Reference [30] demonstrated that the coupled-cluster
wave function of the intrinsic Hamiltonian (1) factorizes
to a very good approximation into an intrinsic part and a
Gaussian for the center of mass. At the cutoff � ¼
2:8 fm�1, we confirmed this behavior for the low-lying
states in the A ¼ 17 nuclei for a wide range of oscillator
frequencies.
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FIG. 2 (color online). Energies of the 1=2þ, 3=2þ, and 5=2þ
states in 17F relative to the 16O ground state (squares, circles,
diamonds) versus the momentum cutoff �. Dotted, dashed, dash-
dotted lines: results for a ‘‘bare’’ N3LO potential.

FIG. 1 (color online). Energies of low-lying states in 17F
relative to the 16O ground state versus the oscillator frequency
@!, using the nucleon-nucleon potential [14]. Data points with
dashed (solid) lines: calculation in oscillator [OHF] (Berggren
[GHF]) basis. Horizontal lines: experimental data.

TABLE I. Energies of the 1=2þ and 5=2þ states relative to the
16O ground state, and the spin-orbit splitting Esoð3=2þ � 5=2þÞ
(in MeV) in 17O and 17F calculated in a Berggren (Gamow) basis
(GHF), and the comparison to experiment [31].

17O 17F
1=2þ 5=2þ Eso 1=2þ 5=2þ Eso

GHF �2:8 �3:2 4.3 �0:082 0.11 3.7

Exp. �3:272 �4:143 5.084 �0:105 �0:600 5.000
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Table I summarizes our results for the 1=2þ, 3=2þ, and
5=2þ states in 17O and 17F, and compares with experiment.
The oscillator frequency is @! ¼ 34 MeV, which corre-
sponds to the energy minimum of the 16O ground state
within the CCSD and within the triples approximation. We
also show the spin-orbit splitting between the 5=2þ and
3=2þ states.

Let us also check the consistency of the coupled-cluster
method for A ¼ 17 nuclei. We compare the one-particle
norm N1 ¼ jPar

araj to the total norm of the excitation
amplitude N ¼ jPar

ara þP
abjr

ab
j rabj j and find N1=N ¼

0:87, N1=N ¼ 0:92, and N1=N ¼ 0:87 for the low-lying
3=2þ, 1=2þ, and 5=2þ states in 17F, respectively. We find
similar ratios for the states in 17O. This shows that these
states are dominated by one-particle excitations from the
16O ground state, consistent with the employed method
[23].

Within the GHF basis, we obtain a width for the reso-
nance states. Table II shows the calculated energy and
width of the 3=2þ resonant states in 17O and 17F relative
to the 16O ground state for @! ¼ 34 MeV. The real part of
the energy of the 3=2þ state in 17O compares very well
with experiment while in 17F it is within 0.5 MeV. The
calculated widths are very reasonable compared to the
experimental values, and represent the first ab initio cal-
culation of a resonance in an A ¼ 17 nucleus.

Conclusions.—We performed ab initio coupled-cluster
calculations of the energy and lifetimes of the low-lying
1=2þ, 3=2þ, and 5=2þ states in 17O and 17F employing
chiral nucleon-nucleon interactions and a Berggren single-
particle basis. The single-particle energy of the 1=2þ pro-
ton halo state in 17F agrees well with the experiment, and
we checked by cutoff variation that this result is not
affected by short-ranged three-nucleon forces. We find a
reduced 3=2þ-5=2þ spin-orbit splitting compared to ex-
periment, and confirmed via cutoff variation that this is
sensitive to short-ranged three-nucleon forces. The life-
times of the 3=2þ resonances in 17F and 17O agree reason-
ably well with experimental data. Our calculations also
show that the inclusion of continuum effects is necessary
for a proper description of the studied states.
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[7] S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501

(2008).
[8] D.W. Bardayan et al., Phys. Rev. Lett. 83, 45 (1999).
[9] O. Sorlin and M.G. Porquet, Prog. Part. Nucl. Phys. 61,

602 (2008).
[10] A. F. Lisetskiy et al., Phys. Rev. C 78, 044302 (2008).
[11] F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester and H.
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