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We consider 2þ 1-dimensional compact Uð1Þ gauge theory at the Lifshitz point with a dynamical

critical exponent z ¼ 2. As in the usual z ¼ 1 theory, monopoles proliferate the vacuum for any value of

the coupling, generating a mass scale. The theory of the dilute monopole gas is written in terms of a

nonrelativistic sine-Gordon model with two real fields. While monopoles remove some of the massless

poles of the perturbative field strength propagator, a gapless mode representing the incomplete screening

of monopoles remains, and is protected by a shift invariance of the original theory. Timelike Wilson loops

still obey area laws, implying that minimal charges are confined, but the action of spacelike Wilson loops

of linear size L goes instead as L3.
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Quantum field theories around Lifshitz fixed points with
a dynamical critical exponent z � 1 have been of interest
for a variety of problems in classical and quantum critical
phenomena [1–7], and have been explored as possible
ultraviolet completions of low-energy effective actions
for applications to particle physics and gravity [8–13]. In
this Letter we study nonperturbative aspects of compact
Uð1Þ gauge theory with z ¼ 2 in 2þ 1 dimensions. The
action in the Euclidean signature is

S ¼ 1

2g2

Z
dtd2x

�
F0iF

0i þ 1

2
ð@kFijÞð@kFijÞ

�
: (1)

Throughout this Letter i, j ¼ 1, 2 are spatial indices, while
�, � ¼ 0, 1, 2 are space-time indices. Such theories,
including their non-Abelian generalizations, have been
considered in [8]. The action (1) appears as the effective
action of 2þ 1-dimensional CPN�1 models at a special
multicritical point [14]. For N ¼ 2 this in turn can be
obtained from an Oð3Þ nonlinear sigma model with z ¼ 2
by the usual relation to the CP1 model �y�� ¼ n, where n
is the unit length field of the Oð3Þ sigma model, and � is a
two-component spinor CP1 field satisfying �y� ¼ 1.
Related versions of z ¼ 2 gauge theories appear in the
description of algebraic spin liquids in 3þ 1 dimensions
[15,16] and of topological critical phases in 2þ 1 dimen-
sions [17].

Note that the theory of Eq. (1) has a continuous sym-
metry with respect to global shifts in F12 ¼ B. The full
action which follows from the spin model [14] also con-
tains essentially singular terms of the form

ðB3=2m1=2=4�2
ffiffiffi
2

p Þe�ð�m=BÞ (where m is the dynamically
generated mass of the spinon fields). These terms are
irrelevant by power counting, but violate the shift
invariance.

We will consider this theory with an ultraviolet cutoff. If
the theory is viewed as the low-energy description of a
SUð2Þ gauge theory broken to Uð1Þ by an adjoint Higgs
field, the mass of the off-diagonal components is the cutoff.

The physics of standard compact electrodynamics
(z ¼ 1) in 2þ 1 dimensions is well-known [18,19].
Compactness implies that there are magnetic monopoles
(instantons), which disorder the vacuum, resulting in the
confinement of minimal charges and the Debye screening
of monopoles. All gauge invariant correlators are massive.
The suppression of monopoles results in a theory with a
gapless photon with potential implications for quantum
antiferromagnets [20–23].
In this Letter we consider the effect of monopoles on the

z ¼ 2 action defined by Eq. (1). We find that the mono-
poles are relevant, and minimal charges are still confined.
However, a gapless mode with a low-energy relativistic
dispersion remains. This mode is the remnant of the B shift
symmetry mentioned above, and represents the long-range
residual interaction between monopoles due to incomplete
screening. Finally, the action of a spacelike Wilson loop of
linear size L behaves as L3.
It is convenient to define the dual field strength

and its Fourier transform H�ðt; ~xÞ ¼ 1
2 ����F

��ðt; ~xÞ ¼R½d!d2 ~k=ð2�Þ3�H�ð!; ~kÞe�ið!tþ ~k� ~xÞ. Ignoring the com-

pactness of the gauge field, the correlators of H�ð!; ~kÞ
may be easily computed from the action (1). In terms of

redefined fields ~H� with ~H0ð!; ~kÞ ¼ H0ð!; ~kÞ
j ~kj , ~Hi ¼ Hi and

with k0 � !

j ~kj , we get

h ~H�ð!; ~kÞ ~H�ð�!;� ~kÞipert ¼ ��� �
k�k� ~k

2

!2 þ ~k4
: (2)

The poles at ! ¼ �i ~k2 are characteristic of a nonrelativ-
istic Lifshitz point.
The equations of motion which follow from (1) are

@iF
0i ¼ 0; �@0F0i þr2@jFji ¼ 0; (3)

where r2 � @i@
i is the spatial Laplacian. The first equa-

tion in (3) may be easily solved by F0i ¼ �ij@
j	. Using the

freedom to shift 	 by an arbitrary function of time, the
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second equation in (3) may be written as @0	þr2H0 ¼
0 ) H0 ¼ � @0

r2 	. Monopoles are violations of the

Bianchi identity for F��. In terms of 	 the monopole

charge density 
ðt; ~xÞ is given by


ðt; ~xÞ ¼ @�H
� ¼ @0H0 þr2	: (4)

The solution to these equations is given by 	ðt; ~xÞ ¼R
dt0d2x0G0ðt� t0; ~x� ~x0Þ
ðt0; ~x0Þ where�
� @20

r2
þr2

�
Gðt� t0; ~x� ~x0Þ ¼ �ðt� t0Þ�2ð ~x� ~x0Þ:

(5)

In momentum space, the Green’s function is G0ð!; ~kÞ ¼
~k2=ð!2 þ ~k4Þ. A point monopole at the origin has 
ðt; ~xÞ ¼
q�ðtÞ�2ð ~xÞ. In our conventions Dirac quantization requires
q ¼ 2�n with n ¼ 0� 1;�2 � � � . The Green’s function is
the magnetic potential for a monopole of charge q ¼ 1 at
the origin.

The classical action for a monopole charge distribution
is

S
 ¼ 1

2g2

Z d!d2 ~k

ð2�Þ3
~k2

!2 þ ~k4

ð!; ~kÞ
ð�!;� ~kÞ: (6)

To see if monopoles are relevant we need to calculate the
action for a single monopole of charge q. From Eq. (6) this

is easily seen to be S1 ¼ 1
2g2

R½d!d2 ~k=ð2�Þ3�½ ~k2=ð!2 þ
~k4Þ� This is of course divergent in the ultraviolet because of
self-energy [24], but has no infrared divergence as would
be present for vortices in two space-time dimensions.
Consequently, the entropy factor for a monopole always
dominates in the large volume limit. This means that
monopoles proliferate in the vacuum for any value of the
coupling.

The partition function of this monopole gas may be
represented as a functional integral over two scalar fields

�1 and �2, e
�S
 ¼ R

D�1D�2e
�S½�1;�2�, where

S½�i� ¼ 1

2

Z
d3x

�
2i�1@0�2 þ ðr�1Þ2 þ ðr�2Þ2

� 2i

g

�1

�
: (7)

Assuming a dilute gas of monopoles with charges 0, �1

[18], we get Zgas ¼
R
D�1D�2e

�SSG½�1;�2�, where

SSG½�1; �2� is a nonrelativistic sine-Gordon model

SSG½�1; �2� ¼ g2

8�2

Z
d3x½2i�1@0�2 þ ðr�1Þ2

þ ðr�2Þ2 � 2M2 cos�1�; (8)

where we have rescaled the fields �1 and �2. The mass

scale is M2 ¼ 8�2�
g2

where � is the fugacity determined by

the monopole self-action (which includes the one loop
contribution).
The theory of Eq. (8) has gapless modes, unlike its

relativistic counterpart. From the Lorentzian signature
action corresponding to (8) we see that the momentum
conjugate of �1 is �1 ¼ ��2. The corresponding
Hamiltonian is

H ¼
Z

d2x
1

2

�
4�2

g2
ðr�1Þ2 þ g2

4�2
fðr�1Þ2

� 2M2 cos�1g
�
: (9)

The original shift symmetry of the field B ¼ F12 now
manifests itself as a shift symmetry of �1. It is easy to
check that the energy of a single particle state of the
linearized Hamiltonian is

Eð ~kÞ ¼ j ~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

q
: (10)

Thus the presence of a gapless mode results from the shift
invariance of F12, and is protected by it to all orders in
perturbation theory. The gapless mode is in fact a
Goldstone mode for a spontaneously broken shift
symmetry.
The propagator matrix for the fields (�1,�2) is given by

Gab ¼ 1

!2 þM2 ~k2 þ ~k4
~k2 �!
! ~k2 þM2

 !

with poles at ! ¼ �ij ~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

p
. It is significant that the

monopole density 
 couples only to �1, because �2 re-
mains massless to all orders in perturbation theory. In fact,

the saddle-point equation for �2 is i@0�1 ¼ �r2�2 )
�2 ¼ �i @0r2 �1. Noting that up to a factor of i, �1 is none

other than the field 	 of Eq. (5), we realize that i�2 ¼
H0 ¼ F12.
Now let us get back to monopoles. Following the steps in

[18], introducing a source J for the monopoles and shifting
the field �1, the generating functional for correlation

functions of the monopole density is seen to be Z½J� ¼R
D�1D�2e

�SSGJ½�1;�2;J�, where

SSGJ½�1; �2� ¼ g2

8�2

Z
d3xf2ið�1 � JÞ@0�2

þ ½rð�1 � JÞ�2 þ ðr�2Þ2 �M2 cos�1g:
(11)

In the quadratic approximation, ( cos�1 � 1� 1
2�

2
1) we

can now easily obtain the two point function of the mono-

pole density in momentum space, h
ð!; ~kÞ
ð�!;� ~kÞi ¼
½M2ð!2 þ ~k4Þ�=½!2 þ ~k2ð ~k2 þM2Þ�, which shows that the
monopoles have a residual long-range interaction, and are
incompletely screened. The full two point function of the
gauge invariant field strength is a sum of the classical
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contribution from the monopole gas and the one loop
contribution from fluctuations around the monopole gas.
Since the theory (1) is quadratic, the latter is the same as
that in the absence of the monopole gas background, i.e.,
Eq. (2). The contribution from the monopole gas is ob-

tained by using (5) to obtain Hmonopole
� ð!; ~kÞ in terms of


ð!; ~kÞ and then using the correlator of 
ð!; ~kÞ. The result
is

h ~H�ðk�Þ ~H�ð�k�Þimon ¼
M2k�k� ~k

4

ð!2 þ ~k4Þð!2 þM2 ~k2 þ ~k4Þ :
(12)

Adding the contributions from (2) and (12) we finally get
the following total correlators:

h ~H�ðk�Þ ~H�ðk�Þitotal ¼ ��� �
k�k� ~k

2

!2 þM2 ~k2 þ ~k4
(13)

The perturbative poles at! ¼ �i ~k2 have been removed by
the monopole gas. The poles of the full propagator are

again at! ¼ �ij ~kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ~k2

p
, as in the parent sine-Gordon

theory. For ~k2 � M2 this is a relativistic dispersion rela-
tion with the speed of light given by M. However, we do
not regain z ¼ 1 electrodynamics in this limit since the
redefined field strengths are related to the original field
strengths nonlocally.

As mentioned previously, the remaining gapless mode in
our theory is a result of the invariance of the original action
to shifts in F12. However, recall that (1) is obtained from a
CPN�1 model in the large-N limit by integrating out the
spinon fields [14]. The action has an additional irrelevant,

but essentially singular, term of the form B3=2m1=2

4�2
ffiffi
2

p e�ð�m=BÞ,
where m is the dynamically generated mass of the spinon
fields [14]. In our present analysism has been taken to be at
the cutoff scale. It is possible that this violation of the shift
invariance, though irrelevant, could lead to a nonperturba-
tive gapping of the gapless mode. Note that 1=N correc-
tions will merely shift the multicritical point where Eq. (1)
applies [14], and are not capable of generating a full gap
for the initially gapless mode.

Let us now turn to another aspect of 2þ 1 compact
electrodynamics, namely, the confinement of infinitely
heavy quarks. To understand this we need to calculate
the behavior of Wilson loops as they grow large.
Consider a Wilson loop along a contour C, WC ¼
expðieRC A�dx

�Þ ¼ expðieRS H�d�
�Þ where S is the

surface which is bounded by C. WC can be factored into a
product of a ‘‘classical’’ monopole contribution, which
we will evaluate via saddle point, and a ‘‘quantum’’ con-
tribution due to fluctuations around the saddle point. The
classical contribution may be rewritten via

R
S H�d�

� ¼R
d3x
ðxÞ
CðxÞ, and subsequently in terms of the generat-

ing function of monopole density correlations as
½WC�classical ¼ Z½J ¼ e
C�, where the source 
C may be

written down explicitly for simple loops. Let us first focus
on the canonical ‘‘timelike’’ Wilson loop in the x2 ¼ 0
plane. For this loop we have 
C ¼ @

@x2

R
dt0d2x0G0ðt�

t0; ~x� ~x0Þ�ðx02Þ�Sðt0x01Þ. Here G0 is the Green’s function
of Eq. (5), and the� function is unity on the surface S and
zero outside it. To evaluate Z½J ¼ e
C�, we shift the field
�1 by e
C, integrate out �2 (possible because it appears
purely quadratically), and look at the saddle-point equation
for �1. Using (5) the saddle-point equation becomes�

� @20
r2

þr2

�
�1 ¼ 2�

e

g
�0ðx2Þ�S þM2 sin�1: (14)

Consider a timelike loop with linear dimensions T, L. For
TM2 � 1 we can ignore the dependence of �1 on t. In
fact, at any point far enough away from the boundary of the
loop, �1 is independent of both t and x1. In this case the
differential equation reduces to the corresponding equation
in the z ¼ 1 case, and has the solution

�1ðx2Þ ¼ 4 sgnðx2Þtan�1

�
e�Mjx2j tan

�
�e

4g

��
: (15)

For a quantized charge e ¼ g	 integer, one has a non-
trivial solution only for odd multiples of g, leading to an
area law. Even multiples of g lead, as in the z ¼ 1 case, to
�1 ¼ 4 sgnðx2Þ which has zero action [25–27]. However,
this solution has to be modified in the region close to the
loop, as well as far away from the loop in the x2 direction to
satisfy the boundary condition for large values of x2 [28].
We now proceed to an explicit calculation in the case

of e being an odd multiple of g, in a linearized approxi-
mation ( sin�1 ��1) valid far from the surface. Using the
standard representation of the step function, the momen-

tum space solution is �1ð!; ~kÞ ¼ 8i�f½k2 sinð!T=2Þ	
sinðk1L=2Þ�=½ð!� i�Þðk1 � i�Þð!2

~k2
þ ~k2 þM2Þ�g where

we will let � ! 0þ in the end. Now we evaluate the

saddle-point action, S ¼ R½d!d2k=ð2�Þ3�½ð!2= ~k2Þ þ
~k2 þM2Þ�j�1ð!; ~kÞj2. Neglecting unimportant overall fac-
tors we obtain

S’
Z d!d2k

ð2�Þ2
1�cosð!TÞ
!2þ�2

1�cosðk1LÞ
k21þ�2

	k22
~k2
�

1

!2þ ~k2ð ~k2þM2Þ�ðM!�Þ
�
; (16)

where the linear ultraviolet divergence of the k2 integral
has been removed by a Pauli-Villars subtraction with a
cutoff �. Clearly there is no divergence in the infrared,
even when � ! 0. The ! integral can be carried out by
contour integration. The poles at �i� produce terms pro-
portional to T as T� ! 0þ. It is evident that the term which
is not proportional to T is also not divergent as T ! 1, and
can therefore at most lead to a perimeter correction.
Ignoring this, we carry out the k1 integration by exactly
the same methods, and obtain a dominant contribution
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proportional to TL,

E ’ TL
Z dk2

2�
k22

�
1

k22 þM2
� 1

k22 þ�2

�
: (17)

This explicitly shows the area law, showing the corre-
sponding charges are confined.

Another surprise is obtained when we calculate the
action for a spacelike Wilson loop. Here one starts from

the exponent
R
dx1dx2H0. Recalling thatH0 ¼ � @0

r2 �1 we

obtain the saddle-point equation�
� @20
r2

þr2

�
�1 ¼ 2�

@0
r2

½�ðtÞ�ðx1x2Þ� þM2 sin�1:

(18)

In the linearized approximation the spacelike Wilson loop
can be calculated using the same procedure used for time-
like loops. In this case, the integrals are convergent in both
the ultraviolet and the infrared. For the special case L1 ¼
L2 ¼ L we can scale out L, and for LM, L� � 1, we find
that hWðCÞi � e�S where S ’ L3ð��MÞ. In this aniso-
tropic theory, there is no reason to expect the action of the
spacelike loop to go with the area law, but it still surprising
to find that it goes faster. The reason is the nonlocal right-
hand side in the saddle-point equation (18).

In the z ¼ 1 theory, a monopole source is Debye
screened by the surrounding gas of monopoles. In our
case, because of the anisotropic nature of the bare interac-
tion, there is a residual long-range interaction even after
screening. The interaction between two monopoles in the

gas behaves as ½j� ~xj2 � 2M2ð�tÞ2�=½j� ~xj2 þM2ð�tÞ2�5=2
for large j� ~xj and �t, showing the incomplete screening.
However, the potential between static electric charges is
sensitive to only the zero frequency part of the Green’s
function of Eq. (5), which is identical to the corresponding
quantity in the z ¼ 1 theory, and leads to confinement.
Thus, the phenomena of the confinement of minimal
charges, and the Debye screening of monopoles, which
were coupled in the z ¼ 1 model, are now decoupled due
to the space vs time anisotropy.

The presence of the gapless mode would be manifested
in the behavior of bulk quantities, e.g., the low temperature
behavior of the specific heat. It remains to be seen if
nonanalytic terms in the action which arise in the effective
gauge theory which follows from the CPN�1 model [14]
change this conclusion. Naively these terms are irrelevant
since they vanish faster than any power of B, and would
lead to a gap for this mode which is much smaller than the
scale of the string tension. One must also consider the
possibility that the instantons of the theory come with
different phases on the different plaquettes of the lattice,
as in [23]. Finally, it remains to be seen if a concrete spin
model such as the one in Ref. [7] for the one-component
Lifshitz theory can be constructed which displays the
behavior presented here.
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