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We propose a natural extension of Hofava’s model for quantum gravity, which is free from the notorious
pathologies of the original proposal. The new model endows the scalar graviton mode with a regular
quadratic action and remains power-counting renormalizable. At low energies, it reduces to a Lorentz-
violating scalar-tensor gravity theory. The deviations with respect to general relativity can be made weak

by an appropriate choice of parameters.
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Introduction.—Recently, Horava has proposed a new
approach to quantum gravity [1]. The key idea is to aban-
don local Lorentz invariance as fundamental and to assume
instead that it appears at low energies as an approximate
symmetry. The breaking of Lorentz invariance is achieved
by equipping the space-time with a preferred foliation by
three-dimensional spacelike surfaces, which defines the
splitting of coordinates into space and time. This allows
us to complete the action of general relativity (GR) with
higher spatial derivatives of the metric, improving the UV
behavior of the graviton propagator and making the theory
power-counting renormalizable. Besides, the action re-
mains second order in time derivatives, avoiding the ghosts
of covariant theories of higher-derivative gravity [2].

The concrete realization of this idea as developed in [1]
unfolds as follows. One considers the 3 + 1 decomposition
of the space-time metric in the preferred foliation,

ds* = (N* — N;N')di* — 2N;dx'dt — y;;dx'dx/,

and writes a generic action of the form [3]
M> 3
S = TP f dxdt\JyN(K;;K7 — AK* = V[y;D, (D

where Mp is the Planck mass; K;; is the extrinsic curvature
tensor K;; = (y;; — V;N; — V,;N;)/(2N), with trace K; y
is the determinant of the spatial metric y;;; A is a dimen-
sionless constant. The potential term V[y; ;] depends on
vi; and its spatial derivatives and is invariant under three-
dimensional diffeomorphisms. Explicitly,

+ Mp*(B,AR + ByR,RIRL + .., (2)

where R;;, R are the Ricci tensor and the scalar curvature
constructed out of the metric y;;; A = y/V,V;, and ¢, A,,
B, are constants. The ellipses represent other three-
dimensional diffeormorphism-invariant operators of di-
mension 4 and 6. As discussed in [1], restricting to the
operators of dimensions up to 6 is sufficient to make the
theory renormalizable by power counting. In what follows
we set & = 1, which can always be achieved by a suitable
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rescaling of time. Notice that we do not impose the “‘de-
tailed balance” of [1].

The action (1) reduces to that of GR if A = 1 and the
terms of dimension 4 and 6 in "V vanish. Otherwise the
model explicitly breaks general covariance down to the
subgroup of coordinate transformations

x — X(1, x), t— (1), 3)

with the standard transformation rules for the metric com-
ponents. This invariance fixes the kinetic part of the action
(1) to be a function of K;;. The symmetry (3) allows us to
restrict N to depend only on time. In this way one obtains
the ““projectable’ version of the theory (as opposed to the
generic or ‘‘nonprojectable” version).

The introduction of terms with higher spatial derivatives
in the action leads to different scaling dimensions of space
and time in the UV and results in a (naively) power-
counting renormalizable theory [1]. Indeed, considering
the anisotropic scaling transformation

t— b3t (4a)
N; — b°N,, Yij 7> vijp  (4b)

X — b 1x,
N — N,

the kinetic part of the action (1) and the operators of
dimension 6 in "V are left unchanged; i.e., they are mar-
ginal [4]. The rest of the operators in V are relevant
deformations. From standard arguments, the action con-
structed from such operators is perturbatively renormaliz-
able. At low energies the potential is dominated by the
operator of the lowest dimension, R. This leads to the
recovery in the infrared of the relativistic scaling dimen-
sion —1 for both space and time.

At low energies, the resulting action differs from that of
GR only by the presence of the parameter A. This suggests
that the theory might have GR as its low-energy limit, if A
flows to its GR value A = 1 in the infrared. However, this
argument is not correct. As pointed out in [1], the explicit
breaking of general covariance by the preferred foliation
introduces a new scalar degree of freedom in addition to
the usual helicity-2 polarizations of the graviton. The study
of the properties of this extra mode has revealed that it
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persists down to low energies and exhibits a pathological
behavior which invalidates the consistency of the theory
based on (1). The pathologies include strong coupling at
energies above a very low-energy scale and fast instabil-
ities, and appear both in the nonprojectable [5-7] and
projectable [7-9] cases. These problems can be traced
back to the anomalous structure of the quadratic action
for the new scalar mode around smooth backgrounds, such
as Minkowski space-time. The purpose of this Letter is to
show that, as suggested in [7], the quadratic Lagrangian
may be regular if the action (1) is supplemented by certain
terms.

Improved behavior of the extra mode.—Let us focus on
the nonprojectable version of the Horava model and con-
sider the following 3-vector

a; = 8ilnN, (5)

having the geometrical meaning of the proper acceleration
of the vector field of unit normals to the foliation surfaces
[7]. This vector is manifestly covariant under the trans-
formations (3). Thus, the potential (2) can be extended to
include terms depending on a; [10]. Clearly, a; has dimen-
sion 1 with respect to the scaling (4). To ensure power-
counting renormalizability one should add to the potential
(2) all the operators of dimensions up to 6, i.e., a new piece

8 Vlyi,a;l=—aaa' + Mp*(Cia;Aa’ + Cy(a;a’)?

+ C3a,-ajR’j + ) +M;4(D1a,-Azai
+ Dy(a;a’)* + Dya;a’a;a R7*+ ). (6)

Note that the operators with odd dimensions are forbidden
by spatial parity. Similarly, the terms in the action with one
time derivative of a; are excluded by the time-reversal
invariance. Finally, terms with two or more time deriva-
tives acting on a; have dimension larger than 6 and hence
are not allowed by power counting.

The addition of terms of the type (6) to the action (1)
endows the extra scalar mode with a healthy quadratic
action at all energy scales. To show it, let us consider a
flat background. The inequivalent terms in the potential
that contribute to the quadratic Lagrangian are:

(dim2) R, a;d’, (7a)
(dim4)  R;;RY,R* RV.d', a;Ad’, (7b)
(dim6) (ViR (ViR)%, ARV,d', a;,A%a’.  (Tc)

The presence of a new operator of dimension 2 with respect
to the model of [1] will play a key role in the consistency of
the theory at low energies. Introducing the scalar perturba-
tions of the metric N = 1 + ¢,

. 9.9
Ny —2%%
)w g,

d;
N, =-LB,

JA

the quadratic Lagrangian becomes

Yij = 8ij — 2(51‘]' -

Lo = MT’Z’{—z{pZ — 2 Ay +4pAY + 4yVJAB

+A4YE — (A= DWAB+ E + 24 + a(9,0)
- I (30 2f2A¢A¢ f3<A¢>

2
M—}wa gzqsw M4¢A3¢} ®

where the constants «, f,,, g, are related to the coefficients
in front of the operators (7) in the potential. In particular, «
is the coefficient in front of the operator a;a'. Fixing the
gauge B = 0 and integrating out the nondynamical fields £
and ¢, we obtain

M2 12631 —1) .
@ 2P fEPAT ) o
£ 2{A—1 ey

where Q[x] = g3x* + f3x + a and

P[M;2A]

et

Plx] = (g3 — g183)x* — (81f3 + 83/1 — 282/2)x°
+ (3 —4g — fifs — 283 — g1a)x*
- Q2f;+ fia +4f)x + (4 — 2a). (10)

The Lagrangian (9) describes a healthy excitation provided
that two conditions are satisfied. First, to avoid ghosts, the
time-derivative term must be positive definite. This puts a
constraint on the parameter A,

Br—DA-1)>0. (11)
This condition can be easily fulfilled, e.g., by choosing A >
1. Second, the dispersion relation of the mode ¢,

A—1 P[-p*/M}] 2
262 -1 o[- p/m3)”
yields the condition to avoid exponential instabilities [as-
suming that (11) holds],

Plx]/0[x]>0 atx<O. (13)

This condition puts certain restrictions on the constants «,
fn» &n- In particular, one gets

0<a<2 (14)

The precise form of the constraints on the other parameters
coming from (13) is quite cumbersome and we prefer to
omit it in this Letter. Nevertheless, the reader can easily
convince him/herself that there is a nonempty region of the
parameter space where (13) is satisfied.

In deriving (9) we have used in an essential way the
dependence of the potential of the model on «;. Indeed, in
the absence of such dependence, as happens in the non-
projectable version of the original Hofava’s proposal, the
constants «, f», f3, g2, g3 become zero and the polynomial
O[x] vanishes identically. This means that the Lagrangian
(9) is singular in this limit.

We can also compare the situation in our model with the
projectable case of Horava gravity. The latter is obtained
from our expressions by taking the limit & — oo, which
forces ¢ to be constant in space. From the dispersion
relation (12) one reads that in this case the scalar mode
has an imaginary sound speed at low energies, cf. [11],

2

12)
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cgroj =—-A-DBAr—-1"I<0.

This leads to an exponential instability, that can be tamed
only by the higher order terms in the dispersion relation.
Thus, the characteristic rate of the instability is of order
|Cproj|Mp. In principle, this rate can be suppressed by
choosing A — 1 to be extremely small. However, in this
case the strong coupling scale of the theory becomes un-
acceptably low [7-9].

Let us return to our model. We should stress that the
healthy behavior of the scalar mode can be achieved si-
multaneously with the stability in the helicity-2 perturba-
tions. Indeed, the dispersion relation for the latter depends
only on the coefficients in front of the operators in the first
column of the list (7). After fixing these coefficients to
ensure stability of the helicity-2 modes, we still have the
freedom to choose the coefficients of the remaining opera-
tors in the list to satisfy (13).

The existence of a healthy quadratic action for the
perturbations around Minkowski space-time guarantees
the absence of short-scale instabilities for any smooth
background. Indeed, at short scales a smooth metric can
be approximated by the flat one, and the short-wavelength
perturbations around this metric behave in the same way as
in Minkowski. Besides, a regular quadratic Lagrangian
allows us to develop the standard perturbation theory to
account for the interactions of the modes. All the interac-
tion terms are irrelevant with respect to the relativistic
scaling (valid at low energies). This implies that their effect
is negligible at low energies: their contributions grow with
energy. This growth “halts’ at the scale where the higher-
derivative terms become important, as then the anisotropic
scaling (4) prevails and all the interactions are at most
marginal. Thus in the UV the theory remains weakly
coupled provided that (i) the higher-derivative terms ap-
pear before any interactions become strong and (ii) the
marginal couplings are small. Hence, with an appropriate
choice of parameters one obtains a model which is weakly
coupled up to trans-Planckian energies [12] (see [13]).
Thus, the concern of [14] that strong coupling persists in
the present model is unfounded.

Finally, the canonical structure of the model at hand
does not present any problem. Indeed, whenever a # 0
the lapse N is no longer a Lagrange multiplier, and the
Hamiltonian constraint (obtained as the variation of the
action with respect to N, H = g—lf, = 0) together with the
equation 77y = 0 form a pair of second-class constraints
(they have a nonvanishing Poisson bracket), which can be
used to eliminate N and 7. Hence, the pathologies [6,15]
present in Horava’s original proposal do not appear.

Phenomenology.—At low energies the dispersion rela-
tion (19) for the scalar mode becomes linear,

,_ A—1 /2 )
w = 1<a 1)p . (15)
Depending on the values of A and «, the propagation
velocity of the scalar may differ from 1 (the velocity of
the helicity-2 modes), making manifest the breakdown of

Lorentz invariance down to low energies. The presence of a
gapless scalar gravitational mode potentially means an
interesting phenomenology. Leaving a detailed study for
the future [9], let us perform a preliminary analysis.

First, we consider the large distance behavior of the
gravitational field of a static pointlike source of mass m.
Note that only the scalar part of the metric is excited in this
case. The corresponding low-energy Lagrangian is ob-
tained by combining the first two lines of Eq. (8) with
the source term. The static part of the Lagrangian is

L = MTIZJ[—ZwAtp +4pA Y + a(9;¢)*] — mp & (x).

(16)
The equations of motion following from (16) imply,

$=v=- -

8aM3(1 — a/2)Ix|
Remarkably, the gravitational field has the same form as in
GR with the effective Newton’s constant

Gy' = 87M3(1 — a/2). (18)

In particular, the relation (17) implies that, in contrast to
the case of Lorentz-invariant scalar-tensor theories of grav-
ity [16], the deflection of light by the gravitational field in
our model is the same as in GR.

The second phenomenological aspect that we discuss is
low-energy cosmology. Notice that for the spatially homo-
geneous metric ansatz the proper acceleration a; vanishes.
As a consequence, the evolution of the Universe is insen-
sitive to the terms with g; in the action and differs at large
distances from the case of GR only due to the presence of
the parameter A. Substituting the Friedman-Robertson-
Walker metric into the action and varying with respect to
the lapse one obtains the standard Friedmann equation
H? = (87/3)Geogmp, Where H is the Hubble parameter
and p is the total density of the Universe. The effective
gravitational constant is

Gl = 47M2(3A — 1). (19)

a7)

Note that G, # Gu. A similar discrepancy between the
gravitational constants appearing in the Newton’s law and
in the Friedmann equation also arises in certain low-energy
theories constructed to describe the Lorentz-violating ef-
fects in gravity. These models include the Einstein-aether
theory (see [17] for a recent review) and the gauged ghost
condensate [18]. The observational bound on this discrep-
ancy comes from the measurement of the primordial abun-
dance of He* and reads [17,19] |Googm/Gy — 1] = 0.13.1In
our model this implies rather mild constraints on the
parameters &, A — 1 < 1071,

The analogy with Einstein-aether theories is extremely
useful to derive other phenomenological predictions. To
make it explicit, it is convenient to consider the covariant
form of our model, which can be obtained following the
method developed in [7]. The foliation structure is encoded
into a scalar field ¢ with a timelike gradient, the foliation
slices are identified as the surfaces ¢ = const and the
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quantities appearing in the action (1) with appropriate
geometrical characteristics of these surfaces. In this way
we obtain the covariant (diffeomorphism invariant) form of
the low-energy part of the model action,

MZ
Siwer = 50 [ A TRHOR+ (4= DTt
+ autu’V ,uPV,u,}, (20)

where u, =V, ¢(V,oV"¢) /2 and we have kept only
terms with the smallest number of derivatives of u,,. This
action resembles a version of the Einstein-aether theory,
with the additional constraint on the unit vector u, to be
hypersurface orthogonal. From (20) it is transparent that
the corrections to GR arising in the present model are due
to the Lorentz-violating scalar field ¢ (entering into the
action through u,,). These effects are proportional to the
parameters «, A — 1. The analogy with the Einstein-aether
theory indicates that the strongest observational bound
arises from Solar-System tests of preferred-frame effects.
Specifically, the post-Newtonian parameter a5™N is con-
strained to be smaller than 4 X 1077 [16]. Assuming « and
A — 1 to be of the same order, one expects that a5t ~ a,
A — 1 [13], as confirmed by explicit computation [9]. This
yields the bound a, A — 1 < 4 X 10~7. The latter bound
together with the requirement of weak coupling implies an
upper limit on the scale suppressing higher-derivative
terms in the action of order 10" GeV [13].

Discussion.—In this Letter we have described a natural
extension of the nonprojectable version of Horava’s pro-
posal for quantum gravity, which is free from the pathol-
ogies present in the original formulation. The extension is
obtained by including in the action all terms allowed by the
symmetries and the requirement that the model is power-
counting renormalizable. It remains to be seen if the model
provides a valid theory of quantum gravity.

Atlow energies the model reduces to a Lorentz-violating
scalar—tensor theory. This potentially implies a rich low-
energy phenomenology to be confronted with existing tests
of GR. Remarkably, the effects of the scalar mode at large
distances can be made weak by an appropriate choice of
parameters without spoiling the good features of the
model. Clearly, a detailed phenomenological study of the
theory is needed to get better constraints.

A problem of any theory with high-energy breaking of
Lorentz symmetry is the mechanism to recover it in the
infrared. This issue arises because the Lorentz violation in
the UV generically translates at low energies into different
limiting propagation velocities for different particle spe-
cies [20] (see [21] for a study in the present context), which
are tightly constrained experimentally [22]. This seems to
require a very precise fine-tuning of parameters to recon-
cile the theory with experiment. An elegant solution would
be to find some (super)symmetry relating all the matter
species in the UV and broken at a scale much lower than the
characteristic scale of Lorentz violation. In this case, the
Lorentz-violating effects would be suppressed at low en-

ergies by the ratio of the two scales. Clearly, this remains
an open issue.

At a more theoretical level, the violation of Lorentz
invariance down to the infrared leads to apparent paradoxes
even in the absence of matter fields. We have seen that the
propagation velocity of the scalar gravitational waves is in
general different from that of the helicity-2 modes. This
opens up the possibility to realize a perpetuum mobile of
the second kind, and hence to violate unitarity, in gedanken
processes involving black holes [23,24]. It will be interest-
ing to see if and how this puzzle is resolved in the model
proposed in this Letter.
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