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A one parameter family of retarded linear operators on scalar fields on causal sets is introduced. When

the causal set is well approximated by 4 dimensional Minkowski spacetime, the operators are Lorentz

invariant but nonlocal, are parametrized by the scale of the nonlocality, and approximate the continuum

scalar D’Alembertian h when acting on fields that vary slowly on the nonlocality scale. The same

operators can be applied to scalar fields on causal sets which are well approximated by curved spacetimes

in which case they approximate h� 1
2R where R is the Ricci scalar curvature. This can used to define an

approximately local action functional for causal sets.
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The coexistence of Lorentz symmetry and fundamental,
Planck scale spacetime discreteness has its price: one must
give up locality. Since, if our spacetime is granular at the
Planck scale, the ‘‘atoms of spacetime’’ that are nearest
neighbors to a given atom will be of order one Planck unit
of proper time away from it. The locus of such points in the
approximating continuum Minkowski spacetime is a hy-
perboloid of infinite spatial volume on which Lorentz
transformations act transitively. The nearest neighbors
will, loosely, comprise this hyperboloid and so there will
be an infinite number of them. Where curvature limits
Lorentz symmetry, it may render the number of nearest
neighbors finite but it will still be huge so long as the radius
of curvature is large compared to the Planck length. Causal
set theory is a discrete approach to quantum gravity which
embodies Lorentz symmetry [1,2] and exhibits nonlocality
of exactly this form [3,4].

Nonlocality looks to be simultaneously a blessing and a
curse in tackling the twin challenges that any fundamen-
tally discrete approach to the problem of quantum gravity
must face. These are to explain (1) how the fundamental
dynamics picks out a discrete structure that is well ap-
proximated by a Lorentzian manifold and (2) why, in that
case, the geometry should be a solution of the Einstein
equations. This is often referred to as the problem of the
continuum limit but in the context of a fundamentally
discrete theory in which the discreteness scale is fixed
and is not taken to zero but rather the observation scale
is large, it is more accurately described as the problem of
the continuum approximation.

Consider first the problem of recovering a continuum
from a quantum theory of discrete manifolds. (We adopt
this term following Riemann [5] and use it to refer to causal
sets, simplicial complexes, graphs, or whatever discrete
entities the underlying theory is based on.) Whenever a
background principle or structure in a physical theory is
abandoned in order to seek a dynamical explanation for
that structure, the state we actually observe becomes a very
special one amongst the myriad possibilities that then arise.
The continuum is just such a background assumption. In

giving it up, generally one introduces a space of discrete
manifolds in which the vast majority have no continuum
approximation. There will therefore be a competition be-
tween the entropic pull of the huge number of noncontin-
uum configurations—choose one uniformly at random and
it will not look anything like our spacetime—and the
dynamical law which must suppress the contributions of
these nonphysical configurations to the path integral. The
following general argument shows that a local dynamics
for quantum gravity will struggle to provide the required
suppression. Consider the partition function as a sum over
histories in which the weight of each discrete manifold is
e�S where S is the real Wick rotated action. As we increase
the observation scale, the sum will be over discrete mani-
folds with an increasing number, N, of atoms. If the action
is local—which in a discrete setting translates to it being a
sum over contributions from each atom—then it will grow
no faster than N times some constant, �, and so each
weight is no smaller than e��N. If the number of discrete
manifolds with N atoms grows faster than exponentially
with N, and if the majority of these discrete manifolds are
not continuumlike then they will overwhelm the partition
function and the typical configuration will not have a
continuum approximation. Even when the number of dis-
crete manifolds is believed to grow exponentially, entropy
can still trump dynamics as was seen in the lack of a
continuum limit in the Euclidean dynamical triangulations
program [6–9]. Causal dynamical triangulations do better,
see, e.g., [10–13], by restricting the class of triangulations
allowed in the sum.
In the case of causal sets, the number of discrete mani-

folds of sizeN grows as eN
2=4 [14] and a local action would

give causal set theory little chance of recovering the con-
tinuum. So the nonlocality of causal sets holds out hope
that the theory has a continuum regime and indeed there
exist physically motivated, classically stochastic dynami-
cal models for causal sets [15] in which the entropically
favored configurations almost surely do not occur and
those that do exhibit an intriguing hint of manifoldlikeness
[16].
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However, nonlocality poses a danger when it comes to
the second challenge of recovering Einstein’s equations. If
we assume that a discrete quantum gravity theory does
have a 4 dimensional continuum regime, and if the theory
is local and generally covariant, then the long distance
physics will be governed by an effective Lagrangian,
which is a derivative expansion in which all diffeomor-
phism invariant terms are present but higher derivative
terms are suppressed by the appropriate powers of the
Planckian discreteness length scale, l:

Leff
ffiffiffiffiffiffiffi�g

p
@
¼ a0l

�4 þ a1l
�2Rþ a2R

2 þ . . . (1)

where R is the Ricci scalar, a1 and a2 are dimensionless
couplings of order 1, and the dots denote further curvature
squared terms as well as cubic and higher terms. The
coefficient of the leading term, a0, is also naturally of order
1 which would make it 120 orders of magnitude larger than
its observed value. However, that would also produce
curvature on Planckian scales and so would not be com-
patible with the assumption of a continuum approximation.
In a discrete theory, the question of why the cosmological
constant does not take its natural value is the same question
as why there is a continuum regime at all and we must look
to the fundamental dynamics for its resolution. Assuming
there is a resolution and a continuum regime exists, locality
and general covariance then pretty much guarantee
Einstein’s equations due to the natural suppression of the
curvature squared and higher terms compared to the
Einstein-Hilbert term.

So, Lorentz symmetry and discreteness together imply
nonlocality, but nonlocality blocks the recovery of general
relativity, and if causal sets were incorrigibly nonlocal, this
would be fatal. Suppose, however, that the nonlocality
were somehow limited to length scales shorter than a
certain lk, which could be much larger than the Planckian
discreteness scale, l, but yet have remained experimentally
undetected to date. There is already evidence that this is
possible and indeed causal sets admit constructions that are
local enough to approximate the scalar D’Alembertian
operator in 2 dimensional flat spacetime [17,18]. We add
to this evidence here by exhibiting a family of discrete
operators that approximate the scalar D’Alembertian in 4
dimensional flat spacetime. Further, both the 2D and 4D
operators, when applied to scalar fields on causal sets
which are well described by curved spacetimes approxi-
mate h� 1

2R, where R is the Ricci scalar curvature. We

use this to propose an action for a causal set which is
approximately local.

We recall that a causal set (or causet) is a locally finite
partial order, i.e., it is a pair (C, � ) where C is a set and � is
a partial order relation on C, which is (i) reflexive x � x,
(ii) acyclic x � y � x ) x ¼ y, and (iii) transitive x � y �
z ) x � z, for all x, y, z 2 C. Local finiteness is the
condition that the cardinality of any order interval is finite,
where the (inclusive) order interval between a pair of

elements y � x is defined to be Iðx; yÞ :¼ fz 2 Cjy � z �
xg. We write x � y when x � y and x � y. We call a
relation x � y a link if the order interval Iðx; yÞ contains
only x and y: they are nearest neighbors.
Sprinkling is a way of generating a causet from a

d-dimensional Lorentzian manifold (M, g). It is a
Poisson process of selecting points in M with density �
so that the expected number of points sprinkled in a region
of spacetime volume V is �V. This process generates a
causet whose elements are the sprinkled points and whose
order is that induced by the manifold’s causal order re-
stricted to the sprinkled points. We say that a causet C is
well approximated by a manifold (M, g) if it could have
been generated, with relatively high probability, by sprin-
kling into (M, g).
We propose the following definition of a discrete

D’Alembertian, B, on a causet C that is a sprinkling, at
density � ¼ l�4, into 4D Minkowski space M4. Let
�: C ! R be a real scalar field, then

B�ðxÞ :¼ 4
ffiffiffi

6
p

l2

�
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þ
�
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X
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X

y2L4

�
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�

; (2)

where the sums run over 4 layers Li, i ¼ 1; . . . ; 4,

Li :¼ fy 2 C: y � x and nðx; yÞ ¼ iþ 1g (3)

and nðx; yÞ :¼ jIðx; yÞj. So, for example, layer L1 is the set
of all elements y that are linked to x and as described
above, they will be distributed close to a hyperboloid that
asymptotes to the past light cone of x and is proper time l
away from x. This sum will not in general be uniformly
convergent if it is over the elements of a sprinkling into
infinite M4 so we introduce an IR cutoff, L � l, by em-
bedding C in M4 and summing over the finitely many
elements sprinkled in the intersection of the causal past
of x and a ball of radius L centered on x. The details of the
calculation that shows why 4 layers are necessary in 4D
will appear elsewhere; however, see [18] for an explanation
of why 3 layers are needed in 2D and the conjecture that
4D will require 4 layers.
Now let � be a real test field of compact support onM4.

If we fix a point x 2 M4 (which we always take to be
included in C) and evaluate B�ðxÞ on a sprinkling intoM4,
its expectation value in this process is given by

�B�ðxÞ :¼ EðB�ðxÞÞ
¼ 4

ffiffiffi

6
p

l2
½��ðxÞ þ 1

l4

Z

y2J�ðxÞ
d4y�ðyÞ

� e��

�

1� 9�þ 8�2 � 4

3
�3

�

�; (4)

where � :¼ l�4Vðx; yÞ, Vðx; yÞ is the volume of the causal
interval between x and y and there is an implicit cutoff L,
the size of the support of �, on the integration range.
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It can be shown that this mean converges, as the dis-
creteness scale is sent to zero, to the continuum
D’Alembertian of �,

lim
l!0

�B�ðxÞ ¼ h�ðxÞ (5)

and that �B�ðxÞ is well approximated by h�ðxÞ when the
characteristic length scale, �, on which�ðxÞ varies is large
compared to l. �B is therefore effectively sampling the value
of the field only in a neighborhood of x of size of order l
and the mean, at least, of B is about as local as it can
possibly be, given the discreteness.

To see roughly how this can happen, notice that the
integrand in (4) is negligible for � > �4 where � is such

that e��4 � 1. The significant part of the integration range
therefore lies between the past light cone of x and the
hyperboloid � ¼ �4 and comprises a part within a neigh-
borhood of x of size �l—whence the local contribution—
and the rest which stretches off far down the light cone. It is
this second part of the range which threatens to introduce
nonlocality but because it can be coordinatized by � itself
and some coordinates �a on the hyperboloid the integra-
tion over it will be proportional to

Z

d3�
Z �4

0
d�e��ð1� 9�þ 8�2 � 4

3
�3Þ�ð�; �aÞ: (6)

If � is nearly constant over length scale �l, the � integra-
tion is close to zero and the contribution is suppressed.

The fluctuations in B�ðxÞ, however, are a different
matter: if the physical IR cutoff L is fixed and the discrete-
ness scale sent to zero, i.e., the number of causet elements
N grows, simulations show the fluctuations around the
mean grow rather than die away and B�ðxÞ will not be
approximately equal to the continuum h�ðxÞ. To dampen
the fluctuations we follow [18] and introduce an intermedi-
ate length scale lk � l and smear out the expressions above
over this new scale, with the expectation that when lk � l
the inhering averaging will suppress the fluctuations via the
law of large numbers. Thus we seek a discrete operator, Bk,
whose mean is given by (4) but with l replaced by lk:

�Bk�ðxÞ¼ 4
ffiffiffi

6
p

l2k

�

��ðxÞþ 1

l4k

Z
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d4y�ðyÞ
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�
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3
�3
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; (7)

where now � :¼ l�4
k Vðx; yÞ. Working back, one can show

that the discrete operator, Bk, with this mean is

Bk�ðxÞ ¼ 4
ffiffiffi

6
p

l2k

�

��ðxÞ þ �
X

y�x
fðnðx; yÞ; �Þ�ðyÞ

�

; (8)

where � ¼ ðl=lkÞ4 and

fðn; �Þ ¼ ð1� �Þn
�

1� 9�n

1� �
þ 8�2n!

ðn� 2Þ!ð1� �Þ2

� 4�3n!

3ðn� 3Þ!ð1� �Þ3
�

: (9)

Bk reduces to Bwhen � ¼ 1. Bk effectively samples� over
elements in 4 broad bands with a characteristic depth lk, the
bands’ contributions being weighted with the same set of
alternating sign coefficients as in B. Since (7) is just (4)
with l replaced by lk, the mean of Bk�ðxÞ is close toh�ðxÞ
when the characteristic scale over which � varies is large
compared to lk. Now, however, numerical simulations
show that the fluctuations are tamed. Points were sprinkled
into a fixed causal interval in M4 between the origin and
t ¼ 1 on the t axis, at varying density � ¼ N

V , where

volume V ¼ �
24 . For each N, 100 sprinklings were done

and for each sprinkling, Bk� was calculated at the topmost
point of the interval for � ¼ 1 and lk ¼ 0:16. For N ¼
5000, the mean was 	 ¼ 9:35 and the standard deviation
s:d: ¼ 134:8. For N ¼ 10 000,	 ¼ 4:00 and s:d: ¼ 102:6
and for N ¼ 20 000, 	 ¼ 1:12, and s:d: ¼ 58:8. These
results indicate that the fluctuations do die away, as antici-
pated, as N increases and are consistent with the depen-

dence N�ð1=2Þ. Further results will appear elsewhere.
The operators B and Bk derived in both 2D (in [18]) and

4D are defined in terms of the order relation on C alone and
so can be applied to a scalar field on any causet. If, there-
fore, (M, g) is a (2D or 4D) curved spacetime and � is a
scalar field onM, we can compute Bk�ðxÞ on a sprinkling
into M and calculate its mean. Let V2 and V4 be the
volumes of the intervals in 2D and 4D, respectively, �2 :¼
V2ðx; yÞl�2

k and �4 :¼ V4ðx; yÞl�4
k . Then, in the presence of

curvature,

�Bð2Þ
k �ðxÞ ¼ 2

l2k

�

��ðxÞ þ 2

l2k

Z

y2J�ðxÞ
d2y

ffiffiffiffiffiffiffi�g
p

� e��2

�
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2
�2
2

�

�ðyÞ
�

(10)

and

�Bð4Þ
k �ðxÞ ¼ 4

ffiffiffi

6
p

l2k

�

��ðxÞ þ 1

l4k

Z

y2J�ðxÞ
d4y

ffiffiffiffiffiffiffi�g
p
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�
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3
�3
4

�

�ðyÞ
�
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in 2D and 4D, respectively.
These expressions can be evaluated using Riemann nor-

mal coordinates and in both cases we find

lim
lk!0

�BðiÞ
k �ðxÞ ¼ ðh� 1

2RðxÞÞ�ðxÞ: (12)

The limit is a good approximation to the mean when the
field� varies slowly over length scales lk and the radius of
curvature r � lk.
If the damping of fluctuations found in simulations in

flat space are indicative of what happens in curved space
then, for a fixed large enough IR cutoff, L, the nonlocality
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length scale lk can be chosen such that l � lk � L and the
value of Bk� for a single sprinkling will be close to the
mean. If Bk is applied to the constant field � ¼ �2, we
therefore obtain an expression that is close to the scalar
curvature of the approximating spacetime.

In each of 2D and 4D, we can now define a one parame-
ter family of candidate actions, Sk½C�, for a causal set, C, by
summing Bkð�1Þ over the elements of C, times @l2 to get
the units right, times a number of order one, which in 4D is

the ratio of l2 to l2p, where lp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

8�G@
p

is the rationalized

Planck length. When the nonlocality length lk equals the
discreteness length l, Bk ¼ B and the action, S½C� takes a
particularly simple form as an alternating sum of numbers
of small order intervals in C. Up to factors of order one, we
have in 2D and 4D, respectively:

1

@
Sð2Þ½C� ¼ N � 2N1 þ 4N2 � 2N3 (13)

and

1

@
Sð4Þ½C� ¼ N � N1 þ 9N2 � 16N3 þ 8N4; (14)

where N is the number of elements in C and Ni is the
number of (iþ 1) element inclusive order intervals in C.

Because B is the most non-nonlocal of the operators in
the family, the action S½C� is a sum of contributions each of
which is not close to the value of the Ricci scalar at the
corresponding point of the continuum approximation.
However, one might expect that if the curvature is slowly
varying on some intermediate scale, which we might as
well call lk, the averaging involved in the summation might
perform the same role of suppressing the fluctuations as the
smearing out of the operator itself so that the whole action
S½C� is a good approximation to the continuum action when
lk is the appropriate size.

There are many new avenues to explore. Can we use
these results to define a quantum dynamics for causal sets?
In 2D is there a relation with the Gauss-Bonnet theorem?
Can we analytically continue the action in an appropriate
way [19] to enable Monte Carlo simulations of the path
sum? What sort of phenomenology might emerge from
such actions? To answer this latter question, we need to
know how big lk must be so that the action S½C� is a good
approximation to the Einstein-Hilbert action of the contin-
uum SEH½g�. In [18], a rough estimate is reported that in

dimension 4, lk � ðl2LÞ1=3. Taking L to be the Hubble
scale, that would mean that in the continuum regime, only
spacetimes whose curvature was constant over a scale

ðl2LÞ1=3 would be able to have an approximately local
fundamental action. One might expect therefore that the
phenomenological IR theory of gravity that could emerge
from such a fundamental theory would be governed by an
effective Lagrangian

Leff
ffiffiffiffiffiffiffi�g

p
@
¼ b0l

�4
k þ b1l

�2
k Rþ b2R

2 þ . . . (15)

where b1 and b2 are of order 1, b0 is set to its observed

value, and where lk varies with epoch and today is much
larger than the Planck scale. The phenomenological impli-
cations of these ideas remain to be explored.
We end by pointing out that these results have a rele-

vance beyond causal set theory as they provide a ‘‘proof of
concept’’ for the mutual compatibility of Lorentz invari-
ance, fundamental spacetime discreteness, and approxi-
mate locality.
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