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Electron acceleration in collisionless shocks with arbitrary magnetic field orientations is discussed. It is

shown that the injection of thermal electrons into the diffusive shock acceleration process is achieved by

an electron beam with a loss cone in velocity space that is reflected back upstream from the shock through

the shock drift acceleration mechanism. The electron beam is able to excite whistler waves which can

scatter the energetic electrons themselves when the Alfvén Mach number of the shock is sufficiently high.

A critical Mach number for the electron injection is obtained as a function of upstream parameters. The

application to supernova remnant shocks is discussed.
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It is widely believed that a large part of cosmic rays
(CRs) in our Galaxy are produced by supernova remnant
(SNR) shocks. The diffusive shock acceleration (DSA)
model, which is based on the idea of particle scattering
by plasma waves, has been considered as the most plau-
sible mechanism of CR acceleration at collisionless shocks
[1]. Since ions can easily be scattered either by ambient or
self-generated magnetohydrodynamic (MHD) waves, the
ion acceleration (or injection) is relatively easier to under-
stand [2]. On the other hand, resonant scatterings of ther-
mal electrons are usually less efficient because of their
small gyroradii, and thus, mildly relativistic energies are
needed for the resonance with MHD turbulence in the
typical interstellar medium. This, the so-called injection
problem, has been a long-standing unresolved issue in the
DSA theory. Indeed, it is known from in situ observations
in the heliosphere that the gradual increase of energetic
particles toward the shock, as predicted by the DSA theory,
is the common feature for ions, while it is not for elec-
trons. The accelerated electrons (typically with energies
&10 keV) are usually confined in a much smaller region
close to the shock [3,4] except for rare occasions [5,6].
These observations in the heliosphere support the theoreti-
cal expectation that the injection of electrons is far less
efficient than that of ions. On the other hand, there is strong
evidence for the presence of ultrarelativistic electrons in
young SNR shocks [7]. The most striking difference be-
tween the heliosphere and other astrophysical environ-
ments seems to be the difference in Alfvén Mach
numbers MA ¼ Vs=vA, where Vs and vA are the shock
and the Alfvén velocity, respectively. The solar wind at
1 AU has an average Mach number of �5–10, while it can
be much higher at SNR shocks. The purpose of this Letter
is to show that there exists a critical Mach number above
which the electron injection can naturally be explained.

The injection of electrons requires either a mechanism
by which thermal electrons are accelerated to mildly rela-
tivistic energies or the generation of high-frequency whis-
tler waves propagating toward the shock which can scatter

subrelativistic electrons. Levinson [8] proposed the injec-
tion process through the excitation of high-frequency
(oblique) whistler waves by the anisotropy of preexisting
CR electrons. A different approach is to consider the
preacceleration of thermal electrons to the injection thresh-
old through plasma microinstabilities in the thin shock
layer. One possible scenario is to consider lower-hybrid
waves excited by the reflected ions in quasiperpendicular
shocks (�Bn * 45, where the shock angle �Bn is the angle
between the shock normal and the upstream magnetic
field), while it requires a rather high shock velocity (a
few percent of the speed of light), as well as large magnetic
field for the injection [9]. Another mechanism working in
weakly magnetized plasmas is the shock surfing accelera-
tion (SSA) [10,11], which was recently shown to be effi-
cient even in two dimensions [12,13]. Amano and Hoshino
[14] have recently demonstrated using one-dimensional
particle-in-cell simulations that suprathermal electrons ac-
celerated by the SSA are subject to further energization by
the shock drift acceleration (SDA). The process can ac-
tually be a possible solution to the electron injection prob-
lem because the accelerated electrons can self-generate
Alfvén waves. We begin our discussion by deriving the
condition required for the self-generation of Alfvén waves.
The SDA can be understood as an adiabatic mirror

reflection process in the de Hoffman–Teller frame where
the motional electric field vanishes. The beam velocity of
the reflected population measured in the upstream rest
frame is given by Vb ’ 2Vs= cos�Bn. We consider electro-
magnetic instabilities excited by the reflected electron
beam. In the following, the mass, charge, density, and
temperature of particle species s are, respectively, given
by ms, qs, ns, Ts. We then define the plasma frequency,
gyrofrequency, thermal velocity, Alfvén velocity, and

plasma beta as follows: !ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�nsq

2
s=ms

p
, �cs ¼

qsB=msc, vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ts=ms

p
, vA;s ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�nsms

p
, �s ¼

v2
s=v

2
A;s, where B is the ambient magnetic field strength.

Note the definition of the gyrofrequency includes the sign
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of charge (i.e.,�ce < 0). Figure 1 schematically shows the
dispersion relation of circularly polarized electromagnetic
waves propagating parallel to the magnetic field in an
electron-ion plasma. Note that the positive k direction is
pointing toward the shock (thus Vb < 0). The beam
strongly interacts with the background plasma only at the
intersection points between the resonance condition ! ¼
kVb ��ce and the normal mode of the plasma (A and B in
the figure). If one considers a cold beam, i.e., � function in
velocity space fðvk; v?Þ / �ðvk � VbÞ�ðv?Þ (vk, v? are

the velocity components parallel and perpendicular to the
ambient magnetic field, respectively), the excitation of
whistler waves at point A is prohibited because otherwise
the momentum conservation law is violated. On the other
hand, the wave growth at point B should overcome the
cyclotron damping of thermal ions, which is strong at short
wavelength kc=!pi * 1 (where c is the speed of light).

Therefore, the excitation of Alfvén waves requires that the
reflected electron beam interacts with the normal mode at
kc=!pi & 1. Assuming j!j � j�cej, we obtain the con-

dition [14]

MA *
cos�Bn

2

mi

me

: (1)

The required Mach number is fairly high, especially at
quasiparallel shocks. Although some young SNRs may
satisfy the condition, it seems to be too stringent to explain
available astrophysical observations.

We now want to relax the requirement by exploring the
possibility of the whistler-wave excitation at point A. It is
actually possible by considering an electron beam with a
loss cone in velocity space. The loss-cone distribution is a
natural consequence of the mirror reflection because par-
ticles having large pitch angles are preferentially reflected

by the magnetic mirror. It can be unstable against the
excitation of whistler wave; however, the instability tends
to be suppressed by the cyclotron damping of thermal
electrons. The damping of whistler waves is significant
for waves satisfying �kve ��ce & ! & þkve ��ce

(the upper shaded region in Fig. 1). Therefore, the wave
generation is expected only when the beam velocity is
faster than the electron thermal velocity jVbj * ve. The
condition can be rewritten as

MA *
cos�Bn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

me

�e

s
� M

inj
A : (2)

Since the required Mach number is now proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
, it is smaller than Eq. (1) by a factor of�43=

ffiffiffiffiffiffi
�e

p
,

thereby greatly relaxing the requirement for plasmas with
�e � 1.
The above analytical expression gives only a rough

estimate. While it is useful, we want to determine the
condition more precisely. To do so, we need to model a
velocity distribution function of the reflected electron
beam. We here adopt a cold ring-beam distribution of the
form fðvk; v?Þ ¼ nb=ð2�VrÞ�ðvk � VbÞ�ðv? � VrÞ,
where nb, Vr are the beam density and ‘‘ring velocity,’’
respectively. Although it may not necessarily be a realistic
distribution, the essential physics is retained for our pur-
pose. The cold plasma dispersion relation for right-hand
circularly polarized electromagnetic waves in the presence
of the cold ring-beam electrons can be written as

D ¼ 1� k2c2

!2
� !2

pi

!ð!þ�ciÞ � ð1� �Þ !2
pe

!ð!þ�ceÞ

� �
!2

pe

!2

�
1

2

k2V2
r

ð!� kVb þ�ceÞ2
þ !� kVb

!� kVb þ�ce

�

¼ 0;

where � ¼ nb=ni � 1 is the density of the beam normal-
ized to the total density. We seek an approximated unstable
solution of the dispersion relation in the low frequency
regime (kc=! � 1). It is easy to understand that the con-
tribution from the beam becomes significant when ! ’
!0 � kVb ��ce. Thus, we retain only the term propor-
tional to 1=ð!�!0Þ2 for the beam. We define k0 as the
wave number at ! ¼ !0 on the whistler mode branch in
the absence of the beam. We then write! ¼ !0 þ �! and
expand the dispersion relation in powers of �! under the
assumption j�!j � j!0j. The growth rate �grow ¼
Imð�!Þ is then obtained as

�grow

�ci
’

ffiffiffi
3

p
2

�
��

mi

me

k20V
2
r

2�2
ci

�
1=3

;

where � ¼ �ð!0 þ�ciÞ2ð!0 þ�ceÞ2=f�ci½�cið!0 þ
�ceÞ2 þ�ceð!0 þ�ciÞ2�mi=meg is a positive numerical
factor of order unity [see, e.g., [15]]. It is important to note

that the growth rate is proportional to V2=3
r , in addition to

FIG. 1. Schematic dispersion diagram for circularly polarized
electromagnetic waves in an electron-ion plasma. Positive (nega-
tive) frequency corresponds to the right-hand (left-hand) polar-
ization. The cyclotron resonance condition ! ¼ kVb ��ce

(Vb < 0) is also shown. Waves in the shaded regions are strongly
damped by the cyclotron damping of thermal plasma.

PRL 104, 181102 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
7 MAY 2010

181102-2



the well-known dependence for beam-plasma instabilities

�1=3. The wave growth, in reality, competes with the
cyclotron damping by a thermal plasma. The cyclotron
damping rate �damp for a wave (!0; k0) may be written as

�damp

�ci
’ �

ffiffiffiffi
�

p
!0@Dr=@!j!¼!0

c2

v2
A

X
s¼i;e

ns
ni

mi

ms

� �ci

k0vs

e�½ð!0þ�csÞ=k0vs�2 ;

where Dr is the real part of D. For calculation of the
damping rate, the contribution from the beam component
is ignored. We assume that the ion temperature is the same
as the electrons (�i ¼ �e), and consider the damping rate
as a function of �e for a given ð!0; k0Þ. Since ð!0; k0Þ
depends only on Vb, the total growth rate �tot ¼ �grow þ
�damp is solely determined by Vb, Vr, �e, and �. In this

Letter, the beam density � is considered as a free parame-
ter, on which the dependence of the result should be
investigated.

For our purpose, it is sufficient to write the ring velocity
Vr by using upstream quantities. It may be estimated as the
minimum perpendicular velocity required for the mirror
reflection

V2
r ’

�
V2
b þ

mi

me

~�V2
s

�
tan2�lc;

where ~� ¼ 2e�HTF=miV
2
s and �lc are the normalized

cross-shock electrostatic potential measured in the
de Hoffman–Teller frame and the loss-cone angle, respec-

tively. Since the potential is estimated to be ~� ’ 0:1–0:2

from in situ observations [16], a fixed value of ~� ¼ 0:2 is
used. The loss-cone angle �lc is defined as tan2�lc ¼
B0=ðBmax � B0Þ using the magnetic field strength in the
upstream B0 and at the maximum Bmax. It is worth noting
that the compressed transverse magnetic field reaches its
maximum at the so-called overshoot region, where the
compression ratio r is greater than expected from
Rankine-Hugoniot relations. Since the foreshock region
of quasiparallel shocks is always accompanied by large
amplitude MHD turbulence, it is natural to assume the
presence of fluctuating transverse magnetic fields �B�
B0 ahead of the shock. Hence, we may estimate the maxi-
mum transverse magnetic field as ��Bþ r sin�BnB0. By
assuming �B ¼ B0, we obtain the maximum magnetic
field strength ðBmax=B0Þ2 ¼ cos2�Bn þ ðr sin�Bn þ 1Þ2.
Thus, we obtain a finite compression ratio even at a purely
parallel shock (�Bn ¼ 0). We assume r ¼ 6 in the follow-
ing discussion.

Since both Vb and Vr are written in terms ofMA and �Bn,
the total growth rate �tot is now a function ofMA, �Bn, and

�e for a given �. We define a critical Mach number M
inj�
A

for the electron injection as a numerical solution of �tot ¼
0. Figure 2 shows the solutions as functions of �Bn for � ¼
10�3, 10�4, 10�5, where a fixed �e ¼ 1 is used. For

comparison, a solution with a constant tan�lc assuming
Bmax ¼ rB0 is also shown by a dashed line for the case
of � ¼ 10�4. These two curves are almost identical in the
quasiperpendicular regime, while the deviation becomes
larger at quasiparallel shocks. We find that the result only

weakly depends on the choice of ~�, �lc at �Bn * 45 for the
parameter range of our interest. On the other hand, the
result may depend on the assumption at a quasiparallel
shock due to its intrinsic complexity. For instance, our
model expects large ratios of Vr=Vb for quasiparallel
shocks (e.g., Vr=Vb ’ 4:7 at �Bn ¼ 30) compared to qua-
siperpendicular shocks (Vr=Vb & 1), which makes it easier
to excite whistler waves. Although this trend itself is
naturally expected, specific quantities will certainly de-
pend on the shock structure. Therefore, we think that our
estimate in the quasiparallel regime includes an uncer-
tainty factor of order unity, which can be studied only by
using self-consistent numerical simulations.
The above result well explains a recent statistical analy-

sis of the Earth’s bow shock crossings observed by the
Geotail satellite [4]. Oka et al. [4] claimed that the power-
law index of accelerated electrons � clearly depends on the

so-called whistler critical Mach number Mwhistler
A ¼

ð	=2Þ cos�Bn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
, which is defined as the critical point

above which whistler waves cannot propagate upstream.
Note that 	 is a numerical factor of order unity, and they

used 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=16

p ’ 1:3. It is easy to recognize that

Mwhistler
A is close to M

inj
A in plasmas with �e � 1, which is

statistically valid in the averaged solar wind. We see from
their Fig. 4(b) that � flattens when Mach numbers go
slightly above Mwhistler

A . In a parameter regime relevant to

their observations (i.e., 10�5 & � & 10�3, �e � 1, and

�Bn * 60), we find roughly Minj�
A =Minj

A � 2 or slightly

below. The result is consistent with the observation in

FIG. 2 (color online). Critical Mach number for the electron
injection as a function �Bn for the case �e ¼ 1. � ¼ nb=ni is the
normalized beam density. The dashed line corresponds to the
case with a constant �lc. The black solid line shows the analytical
expression given in Eq. (2) for reference.
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that the critical Mach number for the efficient electron
acceleration is larger than Mwhistler

A by a factor of �2.
Note that our extensive parameter survey shows that

roughly Minj�
A =Minj

A � 1–3 for a more wide range of

parameters.
Since the growth rate of whistler waves well above the

threshold is much larger than the ion gyrofrequency (e.g.,
�tot=�ci ’ 21 for MA ¼ 10, �e ¼ 1, �Bn ¼ 80, and � ¼
10�4), the spatial scale of the wave growth is much smaller
than the convective gyroradius of ions Vs=�tot � Vs=�ci,
which represents the typical width of the quasiperpendic-
ular shock transition region. Therefore, we expect that the
electron acceleration occurs within the thin shock transi-
tion region, which again well explains the observed char-
acteristics of energetic electrons. We should note that loss-
cone-type distributions are frequently observed in the fore-
shock region and thought to be a result of the mirror
reflection process [17]. Therefore, the assumption of
loss-cone distributions seems to be reasonable at first
glance. On the other hand, the presence of a loss cone in
the upstream region means the absence of whistler-wave
generation and resulting pitch-angle scattering, which is
most likely due to lower Mach numbers. Careful reanalysis
of the electron measurements as a function of Mach num-
bers within or just upstream of the shock is needed to
further ensure the applicability of the present theory. It is
important to mention that Gosling et al. [3] reported that
suprathermal electrons are observed primarily around qua-
siperpendicular shocks, with an exception of an unusually
high Mach number solar wind MA � 41. According to the
authors, the shock (�Bn � 45) was quasiparallel in charac-
ter but has an enhanced suprathermal electron flux, which
is also consistent with our prediction.

So far, we have confirmed that the present theory is
strongly supported by in situ measurements of the bow
shock. It is interesting that the critical parameter MA=

ffiffiffiffiffiffi
�e

p
is independent of both the ambient density and the mag-
netic field strength. Our result indicates that the required
condition for the electron injection may be written by using
typical SNR shock parameters:

MAffiffiffiffiffiffi
�e

p ’ 68

�
Vs

3000 km=s

��
Te

10 eV

��1=2
* 30; (3)

regardless of the upstream magnetic field directions (�Bn).
Therefore, we conclude that the injection and subsequent
acceleration of electrons through the DSA process will
operate in young SNR shocks. This gives, for the first
time, the most natural explanation for the difference in
the electron acceleration efficiencies observed in different
environments.

In this study, we have performed only the linear insta-
bility analysis. However, it is known that whistler waves
undergo both forward and inverse cascade processes [18],
which may enhance the efficiency of injection and further

acceleration to relativistic energies. We should note that a
quantitative estimate of the injection rate �� 10�4 is
given by [14] with some simplifying assumptions.
Although it is possible to consider that nonlinear processes
affect the estimate quantitatively, the injection process
itself will not be modified as it has only a weak dependence
on the injection rate. Therefore, we think that the present
mechanism for the electron injection is robust, and there is
no reason why the process should not work in astrophysical
shocks.
One of the most important remaining problems, when

it applies to SNRs, is probably the effects of CR back-
reaction. It is believed that CRs amplify the upstream
magnetic field up to �0:1–1 mG as suggested by x-ray
observations of some young SNRs. While the condition
given by Eq. (3) is independent of the magnetic field
strength, other effects such as preshock electron heating
and deceleration of the upstream plasma, if strong, might
become important. Although we think the injection mecha-
nism itself will remain unchanged because of the locality
of the process, it is interesting to investigate the conse-
quence of such nonlinear shock behaviors to the electron
injection efficiency.
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