
Implementing Arbitrary Phase Gates with Ising Anyons

Parsa Bonderson,1 David J. Clarke,2 Chetan Nayak,1,3 and Kirill Shtengel2

1Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106, USA
2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

3Department of Physics, University of California, Santa Barbara, California 93106, USA
(Received 15 December 2009; published 7 May 2010)

Ising-type non-Abelian anyons are likely to occur in a number of physical systems, including quantum

Hall systems, where recent experiments support their existence. In general, non-Abelian anyons may be

utilized to provide a topologically error-protected medium for quantum information processing. However,

the topologically protected operations that may be obtained by braiding and measuring topological charge

of Ising anyons are precisely the Clifford gates, which are not computationally universal. The Clifford gate

set can be made universal by supplementing it with single-qubit �=8-phase gates. We propose a method of

implementing arbitrary single-qubit phase gates for Ising anyons by running a current of anyons with

interfering paths around computational anyons.
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Non-Abelian anyons, quasiparticles with exotic ex-
change statistics described by multidimensional represen-
tations of the braid group [1], can provide fault-tolerant
platforms for quantum computation. Their nonlocal state
space can be used to encode qubits that are impervious to
local perturbations. Topologically protected computational
gates may be implemented by braiding the anyons [2] or
measuring their topological charge [3].

Ising-type anyons currently appear to be the most likely
platform on which topological quantum computation will
be actualized. They are expected to occur in a number of
systems, including 2nd Landau level quantum Hall states
[4,5], px þ ipy superconductors [6], lattice models [7],

topological insulator-superconductor interfaces [8], and
any generic 2D system with Majorana fermions [9].
Their existence in the � ¼ 5=2 quantum Hall state is
supported by recent experiments [10,11].

The braiding transformations of Ising anyons are given
by the spinor representations of SOð2nÞ [12]. The set of
gates that may be obtained through braiding and/or topo-
logical charge measurement of Ising anyons is encoding
dependent, but never computationally universal. For the
standard qubit encoding (i.e., one qubit in four anyons), the
computational gates obtained via braiding or measurement
of anyon pairs are the single-qubit Clifford gates. These
gates can be generated by the Hadamard and �=4-phase
gates, where Rð�Þ ¼ diag½1; ei�� is called the ‘‘�=2-phase
gate.’’

The CNOT gate may be implemented by allowing the use
of nondemolitional measurements of the collective topo-
logical charge of four anyons [13,14]. Adding this gener-
ates the full set of Clifford gates, which can be efficiently
simulated on a classical computer, but becomes universal
when supplemented with a �=8-phase gate [15].

One way to obtain �=8-phase gates (as well as CNOT

gates) is through dynamical topology change of the system

[16]. However, this requires complicated physical manipu-
lations of the system which are currently infeasible, such as
switching between planar and nonplanar geometries.
Alternatively, if one can implement ideal (e.g., topo-

logically protected) Clifford gates, then they can be used
to perform ‘‘magic state distillation’’ [13,14] to produce
error-corrected �=8-phase gates from noisy ones. This
purification protocol (which has polylog overhead) con-
sumes several copies of a magic state, e.g., jA�=4i ¼
1ffiffi
2

p ðj0i þ ei�=4j1iÞ, and outputs a single qubit with higher

polarization along a magic direction. Once a sufficiently
pure magic state is produced, it may then be consumed to
generate a�=8-phase gate. This protocol permits a remark-
ably high error threshold of over 0.14 for the noisy gates, as
compared to the ‘‘high’’ threshold of 10�3 for postselected
quantum computation [17]. Hence, it is important to devise
practical methods of generating the �=8-phase gate within
this error threshold for systems with Ising anyons.
A simple proposal for this is to move bulk quasiparticles

close enough to each other to let the microscopic physics
split the energy degeneracy of the fusion channels encod-
ing a qubit. The resulting time evolution can produce
arbitrary phase gates, albeit unprotected ones in need of
error correction (e.g., by magic state distillation). However,
the energy splitting caused by bringing two quasiparticles
together oscillates rapidly with their separation [18,19], so
small errors in the quasiparticles’ spatial separation will
translate into large errors in the phase. Thus, this approach
appears unlikely to be able to meet even the generous error
threshold of magic state distillation.
In this Letter, we propose a method of implementing

arbitrary phase gates for systems with Ising-type anyons
that aims to be more practical and to achieve a manageable
error rate. This method involves a device consisting effec-
tively of a beam splitter or tunneling junction that is used to
run a current of anyons through interfering paths around
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computational anyons. We first analyze the effect of such a
device using a semiclassical picture of the anyonic current
applicable to general Ising systems. Subsequently, we per-
form a more detailed analysis (including error estimates)
for Ising systems in which the anyonic current is provided
by edge modes described by conformal field theory.

For the purpose of constructing the phase gate, we
consider a topological qubit encoded in a pair of anyons
carrying Ising topological charge �. The two possible
fusion channels I and c correspond to the qubit basis
states j0i and j1i. In the quantum Hall context, the anyons
comprising the topological qubits may be localized using
quantum antidots, each carrying a topological charge of �
(i.e., an odd number of e=4 quasiparticles), as proposed in
[20]. The two anyons comprising a qubit are placed in a
‘‘sack’’ geometry as shown in Fig. 1. This geometry was
proposed for the detection of non-Abelian statistics in [21],
where it was described as a ‘‘wormhole.’’ The sack may be
created by deforming the edge of the quantum Hall droplet.
The current flowing around the edge can tunnel from�a=2
to a=2 (so the sack has perimeter length a) with a strength
determined by the distance d across the constriction. In the
weak-tunneling, low temperature, low voltage limit, the
quasiparticles with the most relevant tunneling operators
will dominate the tunneling current. For Ising-type quan-
tum Hall states, this will generally include but not be
restricted to the fundamental quasiholes that carry charge
�. However, quasiparticles that do not carry� will have no
effect on the topological qubit here, so we will neglect
them in our analysis. As we will see, the interference
between the possible trajectories from left to right enacts
a nontrivial transformation on the qubit.

In other possible physical realizations of Ising anyons,
the � anyons comprising a qubit may need to be pinned by
other means; e.g., in a chiral p-wave superconductor, a
hole may be bored through the sample where flux can be
trapped. It may be also be easier in some realizations to
construct interfering paths for a beam of bulk quasipar-
ticles rather than to rely on edge quasiparticles. With this
situation in mind, we now compute semiclassically the
effect of a beam of � quasiparticles incident from the
left. This calculation will also capture some of the features
of the more involved edge theory calculation, relevant to
the quantum Hall setting. For ease of comparison with
Fig. 1, we use terminology appropriate to that picture.
We assume that at the tunneling junction in Fig. 1 a �
quasiparticle can tunnel with amplitude T and will con-
tinue along the edge with amplitude R.

We can treat the anyons semiclassically and analyze the
effect that sending them through the device has on the
qubit. Braiding statistics contributes a factor of þ1 or
�1 when a � anyon travels one full circuit around a region
containing topological charge I or c , respectively. This
non-Abelian contribution is in addition to the Abelian
phase � acquired when a � anyon encircles the device
loop counterclockwise. This phase � contains the Abelian

statistical angle, the Aharanov-Bohm phase, and possibly
other terms, depending on the realization of the device.
The resulting transformation to the qubit when one �

anyon has passed through the device is

U ¼ T e�i��z þ jRj2 X1
n¼0

ð�T �ei��zÞn

¼
1þT e�i�

1þT �ei� 0

0 1�T e�i�

1�T �ei�

2
4

3
5; (1)

where �z accounts for the non-Abelian braiding statistics.
Here the first term results from direct tunneling across the
constriction, and the remaining terms describe the effect of
the � quasiparticle passing around the edge of the sack one
or many times. This does not transfer topological charge to
the qubit, so the matrixU is diagonal and unitary. However,
braiding a � quasiparticle from the beam around the com-
putational � anyons is topologically equivalent to pro-
cesses that transfer topological charge c between the
computational pair. These are the same processes that
would cause energy splitting between the otherwise degen-
erate fusion channels of the qubit when its � quasiparticles
are brought close together [22]. Hence, the net effect of
passing a � through the device is similar to that of splitting
the energy, i.e., to produce a relative phase between these

channels. Up to an overall phase, U ¼ Rð�Þ, where � ¼
2 arctan½2jT j sin�

1�jT j2 �, and � ¼ �� argfT g. For jT j � 1, this

gives � ’ 4jT j sin�. The phase gate generated using this
device may be controlled by sending multiple � quasipar-
ticles through the system or by adjusting the experimental
variables T and �.
For Ising-type systems that support an anyonic edge

current, such as those in Refs. [4–9], we should go beyond
this semiclassical calculation and analyze the quasiparticle
tunneling and interference using the proper edge theory.
The combined edge and qubit system is described by the
HamiltonianH ¼ HE � 1þHtunðtÞ � �z, whereHE is the
Hamiltonian describing the unperturbed edge and Htun

describes tunneling of � quasiparticles across the constric-

FIG. 1 (color online). An implementation of the phase gate
device in Ising-type quantum Hall states. A section of the Hall
fluid (hatched region) is formed into a sacklike enclosure around
two � anyons encoding a qubit. The edge current (arrowed lines)
tunnels quasiparticles across the constriction with strength �,
inducing a phase gate on the qubit.
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tion. As before, the �z represents the braiding statistics of
the edge � with the qubit, picking up a minus sign each
time the � braids around the c charge. The strength of the
tunneling Hamiltonian can be adjusted by changing the
separation distance d across the sack constriction. We
represent the density matrix of the combined system by
� and the qubit’s density matrix is obtained from this by
tracing out the edge � ¼ TrE�.

Solving the interaction picture Schrödinger equation

i
d~�ðtÞ
dt

¼ ½ ~HtunðtÞ � �z; ~�ðtÞ�; (2)

where ~AðtÞ ¼ eiHEðt�t0ÞAðtÞe�iHEðt�t0Þ, with the assumption
that the edge and qubit are unentangled at time t ¼ t0, we
find that

�ðtÞ ¼ �00ðt0Þ e�&2=2e�i��01ðt0Þ
e�&2=2ei��10ðt0Þ �11ðt0Þ

" #
; (3)

where � and &2 are real-valued time dependent quantities,
and &2 � 0. The diagonal elements of the qubit density
matrix are unaltered from their initial state, as the
Hamiltonian commutes with 1 � �z. The sack geometry
will therefore implement a phase gate Rð�Þ with phase-
damping noise parametrized by &2.

Applying a Hadamard gate and then this noisy phase
gate to j0i creates a magic state jA�=4i with error

	¼1�hA�=4j�jA�=4i¼1

2

�
1�e�&2=2 cos

�
���

4

��
: (4)

If 	 < 0:14, this can be used with magic state distillation to
generate an error-corrected �=8-phase gate [13,14].

Computing the values of � and &2 to second order in the
tunneling Hamiltonian, we have

� ’ 2
Z t

t0

dt0h ~Htunðt0Þi; (5)

&2 ’ ��2 þ 4
Z t

t0

dt1
Z t

t0

dt2h ~Htunðt1Þ ~Htunðt2Þi: (6)

We note that &2 takes the form of a variance in the phase.
To compute concrete values of � and &2 for the most

physically relevant example, we turn to the field theoretic
description of the edge of a Moore-Read quantum Hall
state [4]. The Lagrangian for the unperturbed edge is [23]

L E ¼ 1

2�
@x’ð@t þ vc@xÞ’þ ic ð@t þ vn@xÞc ; (7)

where the charged and neutral sectors are, respectively,
described by the chiral boson (’) and fermion (c ) modes,
with velocities vc and vn. The operator that tunnels charge
e� ¼ e=4 � quasiparticles across the constriction is

Htun¼�e�i��

�
a

2

�
�

�
�a

2

�
ei’ða=2Þ=

ffiffi
8

p
e�i’ð�a=2Þ= ffiffi

8
p

þH:c:;

(8)

where � includes the Aharanov-Bohm phase (e�BA) ac-

quired in traveling around the sack as well as any Abelian
braiding statistics factors.
Assuming the edge was initially in thermal equilibrium

at temperature T, i.e. �ðt0Þ¼ ðe�HE=T=TrE½e�HE=T�Þ�
�ðt0Þ, we find

h ~HtunðtÞi ¼ 2

�

�T=vc

sinh�Tavc

�
gc
�

�T=vn

sinh�Tavn

�
gn j�j sin�: (9)

Here 
 is a short-range cutoff, gc ¼ 1=8 and gn ¼ 1=8 are
the scaling exponents of the charge and neutral modes,
respectively, and � ¼ �� argf�g þ �=2.
From Eqs. (5) and (9), we see that there are several

experimental parameters which may be used to control
the phase � generated using the sack geometry. In particu-
lar, we envision d and the area A enclosed in the sack as the
primary physical quantities to adjust, since these provide a
practical means of tuning j�j and �, respectively, while
keeping the other quantities essentially constant. With a
properly designed geometry, these quantities can be ad-
justed sufficiently while causing only negligible changes to
a. In contrast to the tunneling amplitude of neutral c
excitations, which oscillates rapidly with distance [18,19]
(and can be understood as Friedel oscillations in a com-
posite fermion picture), the tunneling amplitude of �

quasiparticles does not oscillate and decays as ��
e�ðe�d=2e‘BÞ2 for d � ‘B (the magnetic length) [11,24].
There are several ways to adjust the phase � for quantum

Hall systems. One practical method is to alter the total area
enclosed in the sack by using a side gate. This leads to a
change in the flux enclosed in the two interfering current
paths, and thus a change in the Aharanov-Bohm phase
included in �. Another method for changing � is by
applying a current along the edge of the system. This
may be implemented via a voltage difference between
the edge that forms the sack structure and the edge on
the other side of the electron gas. Driving this current
populates or depopulates charge on the edge of the electron
gas, and hence changes the area as a side gate would.
Let us hold fixed all the experimental parameters except

the tunneling amplitude, which we vary as �ðtÞ ¼ �0fðtÞ,
for fðtÞ a general (real, non-negative) signal profile with
characteristic ‘‘duration’’ time scale � 	 R1

�1 dtfðtÞ. This
gives � ’ !�, where ! 	 2h ~HtunðtÞi=fðtÞ, and

&2 ’ !2

sin2�

Z 1

�1
dt�ðtÞFðtÞ; (10)

�ðtÞ ¼ 1

2
ð�gc

c �gn�1=4
n ���gc

c ��gn
n Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�1=2

n

2

s

þ
�
��gc

c ��gn
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�1=2

n

2

s
� 1

�
sin2�; (11)

�c;nðtÞ ¼ 1�
sinh2ð�Tavc;n

Þ
sinh2ð�Tt� i
Þ ; (12)

where FðtÞ 	 R1
�1 dt0fðt0Þfðt0 � tÞ. We note that �ðtÞ ! 0
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exponentially for long times with a decay rate proportional
to the temperature. We generally have the bound

&2 &
!2

sin2�

sinhð�Tavn
Þ

�T
��; (13)

where � is a dimensionless function of gc, gn, and
sinhð�Ta=vcÞ
sinhð�Ta=vnÞ . When a

vc;n
� 1

�T (i.e., a is much shorter than

the thermal coherence length), this becomes a temperature

independent bound &2 & !2a=vn

sin2�
�� with � now depending

only on gc, gn, and vn=vc. Using ! ’ �=� in these ex-
pressions, we see that it is favorable to increase the dura-
tion � (e.g., by using weaker tunneling) used to enact a
particular phase gate, since the bound decreases as 1=�.
However, this must be balanced with the need to keep time
scales much shorter than the qubits’ coherence time.

To demonstrate that the �=8-phase gate can (at least in
principle) be implemented with sufficiently low error using
this device, we compute & resulting for � ¼ �=4 using a
sack of length a ¼ 1 �m, a rectangular pulse of duration
�, i.e., fðtÞ ¼ 1 for 0< t < � and 0 elsewhere, and veloc-
ities vc ¼ 105 m=s and vn ¼ 104 m=s estimated for the
� ¼ 5=2 state from numerical studies [25,26]. In Fig. 2, we
display the resulting region of parameter space (for differ-
ent values of �) in which the error is below the threshold
	 < 0:14 for magic state distillation. The threshold curves
move up as � is varied away from �=2, and will diverge as
� ! 0 or �.

It is straightforward to repeat the preceding edge theory
analysis for other Ising-type systems with a conformal
edge theory. The results are again given by the preceding
equations, but with different values of gc, gn, e

�, and �.
The values of these quantities for Ising-type quantum Hall
candidates [4,5] for all the observed 2nd Landau level
plateaus can be found in [11]. For systems with chargeless
Ising edges [6–9], one has gc ¼ e� ¼ 0 and gn ¼ 1=8.

In addition to offering a correctable error rate, this phase
gate implementation offers several practical advantages.
The computational anyons may remain stationary while

only the edge of the system is manipulated, thus circum-
venting the need for fine control over the motion of
bulk quasiparticles and making it compatible with
‘‘measurement-only’’ proposals [3]. As this device would
only require the use of established techniques for deform-
ing the edge using top and side gates [10], it provides the
first realistic proposal for achieving universal quantum
computation using Ising anyons.
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FIG. 2 (color online). Error-correction threshold curves for
implementing a �=8-phase gate using the sack geometry in a
Moore-Read state, when � ¼ �=2 (solid curve), �=8 (dashed
curve), and �=16 (dotted curve). Magic state distillation is
applicable in the shaded region above these curves (which can
thus be viewed as indicating the minimum required gate duration
as a function of temperature).
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