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We perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas

trapped in an optical lattice. The entropy of the system is determined by comparing accurate measure-

ments of the equilibrium double occupancy with theoretical calculations over a wide range of parameters.

We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to

obtain quantitative agreement with the experimental data. The reliability of the entropy determination is

confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud

we obtain an entropy per atom as low as 0:77kB which is about twice as large as the entropy at the Néel

transition. The corresponding temperature depends on the atom number and for small fillings reaches

values on the order of the tunneling energy.
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Experimental progress in the field of atomic quantum
gases has led to a new approach to quantum many-body
physics. In particular, the combination of quantum degen-
erate and strongly interacting Fermi gases [1,2] with opti-
cally induced lattice potentials [3] now allows the study of
a centerpiece of quantum condensed matter physics, the
Fermi-Hubbard model [4]. The high level of control over
the atomic systems has led to the concept of quantum
simulation, which for the case of the Fermi-Hubbard model
is expected to provide answers to intriguing open questions
of frustrated magnetism and d-wave superfluidity [5].
Recent experiments [6,7] have indeed demonstrated that
the strongly correlated regime of the repulsive Fermi-
Hubbard model is experimentally accessible and the emer-
gence of a Mott insulating state has been observed. In this
Letter, we succeed in performing a quantitative simulation
of the Fermi-Hubbard model using cold atoms. The level of
precision of the experiment enables us to determine the
entropy and the temperature of the system, and thereby to
quantify the approach to the low temperature phases.

The main challenge for the quantum simulation of the
Fermi-Hubbard model is a further reduction in tempera-
ture. Here the lack of a quantitative thermometry method in
the lattice is a key obstacle. For strongly correlated bosonic
systems thermometry has recently been demonstrated by
direct comparison with quantum Monte Carlo simulations
[8] or by using the boundary of two spin polarized clouds
[9]. In the fermionic case, previous methods to determine
the temperature could be used only in limiting regimes of
the Hubbard model, namely, the noninteracting [10,11] and

zero-tunneling [6,12] regimes. However, intermediate in-
teractions are most interesting for quantum simulation of
the Fermi-Hubbard model and no reliable thermometry
method has been available up to now.
In both the metallic and Mott insulating regimes an

accurate measurement of the double occupancy provides
direct access to thermal excitations. We analyze the cross-
over from thermal creation of double occupancies to ther-
mal depletion which is unique to a trapped system (see
Fig. 1). The variability of the double occupancy with
respect to temperature allows the entropy of the system
to be inferred directly by comparison with two ab initio
theoretical methods. By determining all other quantities
entering the analysis separately and with methods that are
independent of the double occupancy measurement, we
demonstrate the versatility of this probe for quantifying
the state of the system.
To obtain a quantum degenerate Fermi gas we adhere to

the procedure described in previous work [6]. A balanced
spin mixture of 40K atoms in the mF ¼ �9=2 and �5=2
magnetic sublevels of the F ¼ 9=2 hyperfine manifold is
evaporatively cooled in a crossed beam optical dipole trap,
with less than 1.2% of the atoms remaining in the mF ¼
�7=2 state. We prepare Fermi gases with total atom num-
bers between N ¼ 30� 103 and 300� 103. The atom
number is calibrated using strong saturation imaging [13]
at high magnetic field, with a systematic error �10%.
The optical lattice potential is then ramped up in 0.2 s

and has a simple cubic symmetry with lattice constant d ¼
532 nm. Its depth is determined from Raman-Nath diffrac-
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tion of 87Rb and confirmed by resonant excitation of atoms
to higher bands [14]. In the lowest Bloch band the tunnel-
ing matrix element is t=h ¼ 174ð30Þ Hz, where h is
Planck’s constant. From transverse oscillations in the di-
pole trap and the standing wave potentials of each lattice
beam, we extract overall harmonic trapping frequencies of
!x;y;z=2� ¼ ½49:4ð9Þ; 52:6ð6Þ; 133:0ð10Þ� Hz and a geo-

metric mean of !=2� ¼ 70:1ð5Þ Hz. The characteristic

filling is � ¼ N=N0 [15], where N0 ¼ ð12t=m!2d2Þ3=2
and m is the 40K atom mass. The characteristic atom
number N0 corresponds to the atom number per spin that
yields half filling in the center of the trap at zero tempera-
ture without interaction.

Before loading into the lattice the interaction is tuned by
adjusting the scattering length with a Feshbach resonance,
whose width was measured using the suppressed dephasing
of Bloch oscillations [16] to locate the zero crossing of the
scattering length. We obtain a width of 7.5(1) G which
deviates from the result of Ref. [17] where the mean-field
energy was measured. We infer the on-site interaction
energy U from the scattering length and the Wannier
function in the lowest Bloch band [18]. This ab initio U
is experimentally validated using resonant excitation of
double occupancies by lattice modulation [6,19]. We cover
the range from weak repulsion in the metallic regime to
strong repulsion with a Mott insulating core using scatter-
ing lengths between 200a0 and 650a0, where a0 is the Bohr
radius. We choose values of the Hubbard parameter
U=6t ¼ 1:4ð2Þ, 2.4(4), 3.2(5), and 4.1(7). Because of the
lattice loading process, beam intensity noise, and incoher-
ent photon scattering, the atoms heat up during prepara-

tion. Before loading into the lattice, the temperature in the
dipole trap is around 0:13TF independent of the atom
number as determined from the momentum distribution
after time of flight. Here TF is the Fermi temperature.
This corresponds to an entropy per atom of s ¼ S=N �
1:3 [20]. Since the system is isolated from the environment,
the temperature changes significantly even when adiabati-
cally loading into the lattice. The entropy, however, only
changes due to nonadiabatic processes. Therefore we can
find a typical upper limit of the specific entropy in the
lattice by reversing the loading sequence and subsequently
measuring the temperature. Here we obtain s < 2:5.
After loading the atoms into the lattice we determine the

double occupancy. A sudden increase of the lattice depth
suppresses further tunneling. The fraction of atoms on
doubly occupied lattice sites D is then obtained by com-
bining rf spectroscopy, Stern-Gerlach separation of the
spin components, and absorption imaging [6,19]. Here
we account for the independently determined offset due
to the imperfection of the initial spin mixture. From long-
term reproducibility and comparison with the adiabatic
formation of molecules via magnetic field sweeps, we
conclude that the relative systematic uncertainty of the
double occupancy measurement is 10%.
Because of the harmonic trapping potential, the tem-

perature behavior of the double occupancy can be mark-
edly different from that of homogeneous systems [11,21].
In a homogeneous system the double occupancy increases
with temperature in most regimes of filling and interaction
strength due to thermal activation. However, in a harmoni-
cally trapped system an increase in temperature allows the
atoms to reach outer regions of the trap, in turn reducing
the density in the central region: in this case thermal
excitations do not populate doubly occupied states but
rather deplete them through the decrease of the density.
The regimes depicted in Fig. 1 demonstrate the competi-
tion between thermal activation and the effect of the trap-
ping potential on the double occupancy as a function of
filling and entropy. To extract the entropy the experimental
data are compared with theoretical results. The curves in
Fig. 1 correspond to the best fitting entropy and its experi-
mental bounds.
We apply a high-temperature series expansion [22] as

well as single-site dynamical mean-field theory (DMFT)
[23] with a continuous time quantum Monte Carlo solver
[24]. In the experimentally relevant regime we find the
high-temperature series and DMFT to be in agreement to
within 0.2%. For simplicity, the theoretical curves shown in
this Letter are therefore generated using the second order
high-temperature series unless stated otherwise. The en-
tropy is determined from a one-parameter least-squares fit
of the high-temperature series Dðs; �iÞ to the experimental
data pointsDi weighting them according to their statistical
errors �Di. The fit minimizes �2 ¼ P

iðDðs; �iÞ �
DiÞ2=�2

Di. The series is able to accurately reproduce the

measured double occupancy for all shown interaction

FIG. 1 (color online). Double occupancy: experiment versus
theory. Points and error bars are the mean and standard deviation
of at least three experimental runs. The solid curve in each panel
is the best fit of the second order high-temperature series to the
experimental data and yields specific entropies of s ¼ 2:2ð2Þ,
2.0(5), 1.9(4), 1.6(4) for the different interactions strengths of
U=6t ¼ 1:4ð2Þ, 2.4(4), 3.2(5), 4.1(7). Curves for s ¼ 1:3 (dashed
curve) and 2.5 (dotted curve) represent the interval of specific
entropy measured before and after the ramping of the lattice. We
use kB ¼ 1.
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strengths. We find deviations of the experimental data only
at the lowest fillings at low repulsion, indicating that for
very small atom numbers and weak interaction the cooling
and loading procedure may fail to produce a constant
entropy per atom.

The size and direction of the corridors between the
initial and the final entropy in the dipole trap has implica-
tions for the usefulness of the double occupancy when
performing thermometry. In Fig. 1(a) the behavior for
low repulsionU=6t ¼ 1:4 is shown. With increasing filling
the system transforms from a dilute gas to an increasingly
dense metal with high double occupancy. In this case the
effect of the trapping potential dominates and D decreases
with increasing entropy. Because of its large j@D=@sj, the
regime of Fig. 1(a) is well suited for thermometry.

At intermediate repulsion strengths in Figs. 1(b) and
1(c), double occupancies become increasingly suppressed
and j@D=@sj decreases. For each interaction strength
@D=@s changes sign at a certain filling. These points
mark the crossover to thermal suppression of double occu-
pancies. If @D=@s vanishes, the theory becomes parameter
free to first order and can be used to further determine other
calibration factors, e.g., the characteristic filling.

Figure 1(d) shows data for samples in the Mott insulat-
ing regime. It exhibits a pronounced plateau of suppressed
double occupancy at intermediate fillings owing to a van-
ishing core compressibility, a characteristic signature of a
Mott insulating core [6,12]. Large filling can increase the
chemical potential to values comparable with U and thus
create double occupancy. In this regime the thermal acti-
vation of double occupancies dominates over the thermal
decrease of density due to the trapping potential. If
@D=@s > 0 a large fraction of particles resides in the
Mott insulating core. Here the chemical potential is high
enough to prevent holes from entering the center and addi-
tionally the density of states is sufficiently gapped to allow
only few thermally excited double occupancies.

We now consider the systematic errors of all parameters
and measurements to assess the absolute reliability of the
present method in determining the entropy. Table I lists the
contributions. The sensitivity of the least-squares fit to
variation of the respective parameter shows the sign of
the influence as well as the magnitude. The total relative
uncertainties are below 25% for all four interaction
strengths, which confirms the validity of the determined
entropies. It is apparent that the systematic errors dominate
and that especially the atom number and double occupancy
calibrations are critical. The observed increase of the spe-
cific entropy with decreasing interaction can be explained
by an interaction-dependent global adiabaticity of the
preparation [25] or by a combination of systematic errors
in N and D.

From the theoretical description, several unique proper-
ties of trapped repulsively interacting Fermi-Hubbard sys-
tems can be derived. Figures 2(a) and 2(b) show the central
density n0 and compressibility �0 ¼ @n0=@� versus char-
acteristic filling for the interaction strengths and specific

entropies of Fig. 1. The plateau in n0 and the reduction of
�0 for U=6t ¼ 4:1 are signatures of the Mott insulating
regime [21]. Compared to the result for a noninteracting
system where the ground state has a compressibility of
1:69=6t at half filling, the compressibility is suppressed by
a factor of 50 to values as low as �0 � 0:03=6t.
The entropy as determined above needs to be related to a

temperature to allow for comparison with models of ho-
mogeneous systems. Figure 2(c) shows this temperature in
units of the half bandwidth as a function of characteristic
filling. The behavior is similar to that of a Fermi gas in a
harmonic trap where the temperature at constant specific
entropy increases with the atom number [11,20]. At the
lowest fillings of � ¼ 5 the temperature in the lattice even

TABLE I. Error budget of the entropy determination. The table
lists the sensitivity of the fit @sfit=@ð�Þ to the changes in the
system’s parameters scaled by their systematic errors �ð�Þ. For a
positive contribution an increase in the parameter would lead to
an increase in the apparent entropy. The contributions are added
in quadrature to the fit error estimate �2

s ¼ 2ð@2�2=@s2Þ�1 to
obtain the total uncertainty of the entropy.

U=6t 1.4 2.4 3.2 4.1

�t@sfit=@t �0:01 0.01 �0:11 �0:08
�U@sfit=@U �0 �0:04 0.07 0.09

�!@sfit=@! 0.01 0.07 �0:07 �0:07
�N@sfit=@N 0.06 0.30 �0:32 �0:32
�D@sfit=@D �0:16 �0:30 0.13 0.13

�s 0.01 0.12 0.18 0.07

Total s 2.2(2) 2.0(5) 1.9(4) 1.6(4)

FIG. 2 (color online). Properties of experimental regimes and
validity of theoretical methods. Panels (a)–(c) show the central
density n0, central compressibility �0, and temperature T
reached in the corresponding Hubbard model as a function of
characteristic filling � for the parameters of Fig. 1.
Panel (d): Agreement between high-temperature series (HTS,
second order dotted line, sixth order dash-dotted line, tenth order
dashed line) and DMFT (solid line) for U=6t ¼ 2:5 and � ¼
16:5 as a function of temperature in the lattice T=6t. For low
temperatures T & t the series starts to diverge.
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approaches the energy scale of the tunneling T � t. At
these low temperatures the results of high-temperature ser-
ies and DMFT start to deviate considerably; see Fig. 2(d).

In a finite trapped system, antiferromagnetic order re-
quires two conditions to be met. It can only be established
in regions of sufficiently constant atom density and low
specific entropy. The experimental situation with respect to
those conditions is depicted in Fig. 3. The upward axes
show the spatial density distribution. At low repulsive
interaction [Figs. 3(a) and 3(b)] the system has a density
above one in the center which corresponds to a significant
doping. In Fig. 3(c), double occupancies and holes com-
pensate in the center and lead to an average density close to
unity which then starts to deviate a few sites away from the
center. Only for the largest repulsion Fig. 3(d), the Mott
insulating core is robust against the confining potential
over the central 20 sites. Here, the density changes by
less than 1%.

The entropy per site is shown on the downward axes in
Fig. 3. It is highest in regions of the trap where the density
is most variable. For small interaction strengths it reaches
values close to the maximum of si ¼ ln4 in some regions.
For large repulsion the sites in the perimeter of the cloud
where ni � 2=3 carry most of the entropy. This can be
understood in the atomic limit at largeU. At ni ¼ 2=3 each
site has three equally likely states and can accommodate
si ¼ ln3 of entropy. The Mott insulating core can only
absorb ln2 of spin entropy. Mean-field theory of the
Heisenberg model predicts this to coincide with the en-
tropy at its critical point. However, quantum fluctuations
lower the entropy at the Néel temperature where magnetic
long-range order sets in to about sH � ln2=2 � 0:35 [26].

We have verified numerically that for the Heisenberg
model with exchange coupling J the entropy is s ¼
0:338ð5Þ at TN�eel=J ¼ 0:946ð1Þ [27,28] by integrating the
energy, S ¼ R

dE=T. Integration from above or below the

Néel temperature agree. Additionally, we performed a new
study of the Hubbard model using a diagrammatic deter-
minant Monte Carlo method [29]. ForU=t ¼ 8, the critical
temperature is TN�eel=t ¼ 0:325ð7Þ [30], and the critical
entropy sN�eel ¼ 0:345ð45Þ. This differs from the mean-field
calculation including fluctuation corrections of Ref. [31]
and is a factor of 2 less than the experimental results
presented here.
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