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Contrary to classical nucleation theory, protein crystals can nucleate via a two-step process in which the

molecular arrangement of the ordered solid phase is preceded by nucleation of a dense amorphous phase.

We study the growth of these precrystalline clusters in lysozyme using a combination of dynamic light

scattering, optical microscopy, and microfluidics. Clusters display Ostwald ripening growth kinetics but

deviate from this trend after nucleation of the crystal phase. This behavior arises from the metastable

relationship between clusters and the ordered solid and is explained numerically using a population

balance model.
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The formation of an ordered solid phase from aqueous
solution is of particular importance in structural biology,
where protein crystals of high purity are necessary for
x-ray diffraction studies. However, the complex interaction
potentials of biological macromolecules have challenged
the formulation of a predictive theory of protein crystal-
lization [1]. Thus great effort has been spent on develop-
ing a more complete understanding of this phase transition
[2–11].

Theoretical and computational studies on model systems
postulated a two-step nucleation mechanism in which mo-
lecular arrangement of the ordered solid phase is preceded
by nucleation of a dense amorphous phase [2,3].
Experimental studies have observed this phase in the
form of dense liquidlike clusters in both colloidal systems
[4,5] and globular protein solutions [6]. There has since
been increasing interest in the nature of this dense cluster
phase and its effect on crystal nucleation rates [7–9].
However, little is known about the growth kinetics of these
clusters themselves. Additionally, a better understanding of
the relationship between this intermediate phase and crys-
tal growth is in principle valuable for controlling crystal
growth to achieve increased purity [10,11]. In this Letter
we investigate the role of Ostwald ripening in the evolution
of protein clusters in order to gain insight into how they
interact with protein crystals.

Typically, Ostwald ripening occurs in the late stages of a
first order phase transition [12]. After nucleation and
growth of the new phase, minimization of total interfacial
energy drives competitive growth between precipitate clus-
ters of various sizes: smaller clusters account for a higher
surface energy per unit volume and are ‘‘devoured’’ by the
larger clusters. Ostwald ripening has been measured in
many inorganic systems [13], and has been qualitatively
observed in some macromolecule crystal systems [14,15].
However, its role in protein crystallization is less well
understood.

The precrystalline dense phase plays an important role
in the crystallization of hen egg-white lysozyme (HEWL),

a model protein for crystallization studies [11]. We built a
microfluidic dynamic light scattering (DLS) apparatus in
order to characterize growth kinetics of these submicron
precipitate populations involved in the crystallization of
HEWL. DLS was used to measure hydrodynamic radii of
populations of small precrystalline clusters while an inte-
grated microscope simultaneously recorded images of
larger nondiffusing crystals, yielding a dynamic range
that extends from a few nanometers to hundreds of mi-
crons. This apparatus allows us to measure ripening of the
clusters and observe the subsequent interaction between
the cluster and crystal phase.
To model the evolution of the cluster size distribution

(CSD) one can consider a distribution of spherical clusters
where the competition between cluster surface curvature
and volume defines a unique aqueous phase equilibrium
concentration for each cluster of radius R. This cluster
solubility is given by the Gibbs-Thomson relation, such
that the solute concentration at the surface of the cluster is

CeqðRÞ ¼ C1 expð�=RÞ (1)

and � ¼ 2�vm=kT is the capillary length, � is surface
tension, and vm is the solute molar volume. For any given
monomer concentration cðtÞ, there will be a population of
clusters which are out of equilibrium and will thus either
dissolve or grow. The rate of cluster growth from transport
of monomers to or from the cluster surface can be deter-
mined by Fickian diffusion [16]:

dR

dt
¼ Dvm

R
½cðtÞ � CeqðRÞ�; (2)

where D is the monomer diffusion coefficient. By combin-
ing a linear approximation of Eq. (1), given � � R, and
Eq. (2) one can identify a critical radius RC ¼ C1�=�ðtÞ
where �ðtÞ is the supersaturation cðtÞ � C1. This result
summarizes the ripening phenomenon: clusters of radius
R< RC have dR=dt < 0 and will dissolve, releasing solute
monomers to supply the growth of clusters with R> RC.
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The first quantitative treatment of Ostwald ripening was
independently formulated by Lifshitz and Slyozov [17] and
Wagner [18] (LSW) from first principles. They evaluated
the time evolution of the CSD by noting that the number of
clusters per unit volume with radius between R and Rþ
dR, nðR; tÞ, is continuous in R space

@

@t
nðR; tÞ þ @

@R

�
nðR; tÞ dR

dt

�
¼ 0; (3)

where dR=dt is given in Eq. (2), and by enforcing mass
conservation

cðtÞ ¼ c0 � 4�

3vm

Z
R3nðR; tÞdR: (4)

The concentration at any time cðtÞ is the difference of the
original concentration co and the total concentration in
solid phase, represented by the integral term. Using
Eqs. (2)–(4) LSW analytically calculated the moments of
nðR; tÞ in the asymptotic limit. They showed that the
distribution mean size and number density depend on

time as t1=3 and t�1, respectively. Many studies since
LSW have reevaluated the ripening phenomena [16,19]
and solved the system both numerically [20] and with
computer simulations [19,21]. We compare both analytic
predictions of ripening rates and simulated CSD evolution
to light scattering and microscopy data.

We used microfluidic free-interface diffusion to induce
HEWL crystallization as described in Ref. [22]. The mi-
crofluidic device is incorporated into a homemade light
scattering system in which a 5 mW, 633 nm laser (Melles
Griot) is focused to a 30 �m diameter spot in the middle of
the protein chamber. Scattered photons are collected at a
60� angle and coupled to a single-mode fiber (Thorlabs)
which delivers the signal to a photon counting module
(Perkin Elmer). In addition to allowing a more convenient
placement of the photon counting module (PCM), the
single-mode fiber acts as a mode filter and improves the
signal to noise of the dynamic light scattering measure-
ment [23]. Photon arrival events are digitized by the PCM
and then counted by a National Instruments PCI card and a
PC. Autocorrelation functions were computed with custom
written Labview software. The mean of CSDs were calcu-
lated with cumulant analysis [24] of the autocorrelation
function and the distributions were solved directly using
CONTIN [25].

HEWL stock was purchased from Hampton Research
and dissolved to 100 mg=ml in a 0.05 mM sodium acetate
buffer at 6.5 pH and sodium chloride was used as a crys-
tallizing agent. Immediately after free-interface diffusion
was initiated, CSDs were extracted from light scattering
data and optical micrographs recorded every 2 min for
10 h. This allows continuous monitoring of the size distri-
bution of submicron clusters as well as visible crystals.
Matlab based image analysis software calculated the indi-
vidual and total crystal area to measure the total protein

mass in crystal phase as well as crystal growth rates similar
to techniques employed in Ref. [26].
Figure 1(a) shows time courses of both the mean clus-

ter hydrodynamic radius obtained by light scattering and
the simultaneous growth of macroscopic crystal observed
with optical microscopy. The conditions chosen
(½lysozyme� ¼ 60 mg=ml, ½NaCl� ¼ 0:6 M at equilib-
rium) yield growth of a few large tetragonal crystals in
hours, but within minutes the cluster population enters the
growth stage. Here, the mean cluster size evolution does

not follow the asymptotic t1=3 growth predicted by LSWor
any other monotonic growth law proposed in previous
crystal growth studies. Instead we observe a peak in the
mean cluster size around 140 min followed by a slow
decrease. The decrease in the mean size of clusters probed
by DLS coincides with the emergence of visible HEWL
crystals [Fig. 1(b)].
To elucidate the relationship between crystals and clus-

ters the NaCl concentration was lowered to 0.5M, such that
typically either one or no crystals nucleate in a 10 h
observation period. Figure 2 compares the mean cluster
size evolution for two such reactions. In one experiment
(open triangles) a single crystal appeared at 74 min and
grows to almost full size in 10 h [Fig. 2 (inset)]. In the
second experiment no crystal appeared in the 10 h time
course (open circles). The respective effects of large crystal
nucleation on the CSD differ significantly. When the emer-
gence of a large crystal is observed the CSD evolution
mimics the data in Fig. 1; a decrease in mean radius of the
bulk CSD coincides with the growth of the large crystal.
When the crystal phase fails to nucleate (and thus there is
no significant depletion of the aqueous phase) the CSD
mean does not peak and instead can be fit with power law
growth (thin black line in Fig. 2) giving an exponent equal
to 0.325, in close agreement with the 1=3 exponent pre-
dicted by LSW theory.
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FIG. 1 (color online). (a) Mean cluster hydrodynamic radius
from cumulant fit (d) with macrocrystal area (�). (b) Time lapse
images of tetragonal HEWL crystal growth in microfluidic FID
chambers at 40, 150, 210, and 600 min. The scale bar represents
100 um [27].
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In order to understand the deviation from the LSW
model, two important assumptions about all present phases
must be noted: (1) molecular deposition onto the surface of
a new phase is a diffusion limited process and (2) the
surface free energy can be approximated by the surface
tension of a spherical cluster of protein monomers. Neither
of these assumptions is valid for a tetragonal HEWL
crystal. On the contrary, in faceted crystal growth, mono-
mer deposition is often an interface kinetic limited process,
and surface free energy is related to the chemical potential
of the crystalline structure. The growth rate (and dissolu-
tion rate) of a crystal face is instead determined by the
density of available incorporation sites and by the kinetic
barrier to incorporation [10]. Amorphous clusters are thus
metastable with respect to the crystal phase [6]. A critical
fluctuation along the structure order parameter within the
dense phase enables nucleation of the more stable crystal
phase [3], after which, crystal growth dominates.

The crystals grow rapidly with respect to the protein
clusters, and interact with the CSD by depleting the system
of protein in solution. These large crystals can be thought
of as a protein ‘‘sink’’ which decreases cðtÞ, in Eq. (2),
thereby increasing the critical radius RC. The peak in mean
radius in Figs. 1 and 2 (open triangles) can be understood
as the point at which RC overcomes the mean cluster size,
as described by Lifshitz and Slyozov.

We model this ripening phenomenon with a simple
simulation to verify our qualitative explanation of the
observation in Fig. 1. The simulation was modified from
a population balance model game developed by De Smet

et al. [21] in which at every step, monomers are added or
subtracted to each cluster at a rate proportional to their
respective solubility determined by Eq. (1). The simulation
steps are as follows. First a distribution of N clusters is
defined, with radii Ri where i ¼ 1; 2; . . . ; N. Each cluster is
filled with ni molecules given molar volume vm and for
every simulation step j, ni is adjusted at a rate dni=dt ¼
KijðRi; RCÞ. This rate comes from substituting Ceq from

Eq. (1) into Eq. (2) which yields

dni
dt

¼ 4�DC1�NA

�
Ri

RC

� 1

�
: (5)

For the case where no macrocrystal is present, mass con-
servation is implemented by imposing

P
i½Kij� ¼ 0 which

defines the critical radius RC ¼ P
i½Ri=N�.

The simulation was carried out on an initial log-normal
cluster size distribution with mean hri ¼ 2:5 nm, width
� ¼ 0:05, and No ¼ 50 000 initial clusters. The mean
radius fit with very high confidence (R2 ¼ 0:99) to power
law growth with exponent equal to 0.33, and the cluster
number density exhibits t�1 time dependence as predicted
by LSW theory (not shown).
We modeled the effect of an emerging crystal by incor-

porating a depletion term into the simulation such that
protein monomers are extracted from the system at a rate
determined by the observed crystal growth, Pj ¼ �dn=dt.

The microscopy data in Fig. 1 were used to calculate this
protein mass consumption rate of the crystal phase. Protein
mass in crystal phase was approximated as a sigmoid in
time, for the simulation, and the depletion termPj takes the

form of the sigmoid time derivative with units of
molecules sec�1. The mass balance equation then becomesP

i½Kij� ¼ Pj and RC ¼ P
i½Ri=ðN � PjÞ�.

Figure 2 shows the results of the simulation, with and
without a protein sink. The simulated mean cluster radii
provide an accurate qualitative description of the experi-
mental data, and with no adjustable parameters the simu-
lated curves agree with the observed cluster evolution to
within a factor of 2. The incorporation of the depletion
term had a dramatic effect on the simulated CSD. The
increased critical radius RC (Fig. 2) which comes from a
rapidly growing crystal, causes a maximum in mean cluster
size, as observed in the experiment (open triangles). As the
macrocrystal growth slows, the critical radius and CSD
mean merge and approach a steady state. Thus, considering
the crystal as a protein sink within the LSW model is
sufficient to describe the time evolution of the amorphous
cluster distribution.
Figure 3 shows the evolution of the CSD calculated with

CONTIN from the same light scattering data used in Fig. 1

and compares the experimental distributions with simu-
lated CSDs. We define time tC as the point at which the
critical radius RC overcomes the mean radius as shown in
Fig. 2. The simulated CSDs with and without a sink term
are virtually identical when t < tC, [Fig. 3(a)], and con-
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FIG. 2 (color online). Comparison of two experimental data
sets with simulation. Crystal conditions are ½HEWL� ¼
60 mg=ml, ½NaCl� ¼ 0:5 M for both data sets. In one experi-
ment a single crystal formed after 74 min (4). In the other, no
crystals formed in a 10 h period (�). Power law (thin black line)
fit to the open circles gives r ¼ 2:82t0:325. Simulated mean
radius evolution with a depletion term (dot-dashed line) and
without (thick solid line). Simulated critical radius RC (thin
purple line). Final single crystal from open triangle set (inset)
scale bar ¼ 100 um.
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verge onto a self-similar distribution defined by LSW.With
a sink term [Fig. 3(b)] the simulated distributions continue
to broaden and flatten for t > tC [Fig. 3(b)], a common
characteristic of Ostwald ripening [20], while the mean
decreases as reflected in Fig. 2. CONTIN analysis of the light
scattering data in Fig. 1 reveals a much more drastic
evolution in the t > tC regime [Fig. 3(c)]. The data reflect
the distribution broadening and decrease in mean radius
predicted by the simulation; however, the observed CSDs
have not yet converged to a self-similar distribution. This
delayed convergence may be indication of transient ripen-
ing [19].

In this Letter we use Ostwald ripening formalism to
explain the growth of precrystal protein clusters. Our mea-
surements of CSD growth rates in lysozyme crystallization
agree with simulations and analytic predictions of LSW
theory. While the simplified model does not inherently
account for competitive growth between clusters and the
crystal phase, interpreting the crystal as a protein sink
suffices to explain observed CSD evolution. The data
here show that a crystal nucleation event is essentially
‘‘recorded’’ in the equilibrium cluster size distribution.
The metastability of the cluster phase is revealed with
nucleation of the crystal phase by a sudden decrease in

mean cluster size. This may present an alternative way of
measuring nucleation rates, a phenomenon which has yet
to be directly observed in protein crystallization.
The authors would like to thank John Ross and Daniel
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FIG. 3 (color online). Simulated and measured cluster size
distributions. (a) Simulated distribution evolution for t < tC
where tC is the time at which RC overtakes hRi (see Fig. 2).
(b) Simulated distribution evolution with sink term for t > tC. (c)
CONTIN analysis of CSD for t > tC in the experiment from

Fig. 1. CONTIN distributions are normalized to scattered intensity.
Distribution mean is indicated with (d).
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