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I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy-electron

metal represents a finite jump in occupancy. Therefore it does not and the resulting density of states has a

sharp, deep anomaly at the Fermi energy which will appear in vacuum tunneling and many other

experiments.
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The striking quantum phenomenon of heavy-electron
formation occurs in intermetallic compounds of the rare
earth and actinide metals (usually Ce, Yb, Lu, and U, but
occasionally others). The f-shell electrons, which are, at
room temperature, to all intents localized spins, scattering
a conventional sea of free metallic electrons, cross over at
low temperature into mobile band electrons, albeit with
very heavy effective masses, and change the Fermi surface
radically in order to accommodate precisely the number of
electrons—or, in the case of Yb, holes—which accounts
for the number of spins [1].

From a fundamental point of view the most surprising
feature of this observation is that the dimensionality of the
Hilbert space which we must use to describe the wave
function has radically changed. N sites on which we may
have a spin up or down have 2N possible states; but if we
can occupy each of these N sites with 0, 1, or 2 real
electrons that amounts to 4N possible states. (If there is
orbital degeneracy that merely changes the arithmetic, not
the enormous discrepancy in dimension.) It turns out that
this is the crucial feature: enforcing the requisite con-
straints on the 4N degrees of freedom causes a character-
istic anomaly. The net effect is to make the T ¼ 0 axis into
a critical line, having a continuously variable exponent for
some properties, but not to invalidate Luttinger’s theorem
and the existence of a Fermi surface.

It is essential to go into the physics of why Ce f
electrons, for example, normally act as spins. The 5f shell
is deeply localized within the atom, so that two f electrons
on the same atom will interact strongly via their Coulomb
repulsion, which is not effectively screened by outer-shell,
metallic electrons. Although the f electrons can hybridize
to an extent with the metal band electrons, the breadth of
the f band caused by this will undoubtedly be small
compared to the repulsion. There will be no more than
one f electron per site, which may have up or down spin.
This is often modeled as simply a spin (the ‘‘Kondo
lattice’’ model), but one should not forget that in con-
densed matter situations spins are always electrons. One
correct way to express this fact is to describe the spin as a
projected electron, i.e., to project away the possibility of
double occupancy of the f shell from a wave function

written nominally in the full Hilbert space of four possible
occupancies.
If the spins are dense, as we lower the temperature they

will tend to order magnetically, and indeed the rare earth
elements are almost all magnetic. But in a sufficiently
dilute compound the magnetic interactions may not domi-
nate, and the hybridization with the metallic electrons may
lead to the formation of narrow f bands. In fact, naive band
calculations always predict f bands much less narrow than
are observed, and that the mobilization of the f electrons
should be much easier than it is, but spectacularly, wrong
as such calculations are quantitatively, they predict the
correct size, and often shape, of the Fermi surface which
eventually appears at low temperature.
I said we must project out double occupancy; when there

is one electron per atom this has the effect of requiring one
spin per site. When the bands form, a percentage of the
f sites will empty because they are hybridized with the
band electrons, and one can show that the chemical poten-
tial will be such that the energy of an empty site is not far
from that of a singly occupied one, and should not be
excluded by projection; so in fact we must project down
to a space of 3 states per f site, not 2. This implies that the
ground state wave function may be written

�ðr1; �1; r2; �2; . . .Þ ¼ PG�ðr1; �1; . . .Þ;
with PG ¼ Y

i

ð1� nfi"n
f
i#Þ:

(1)

Here� is a general function in the full Hilbert space of all
electrons’ coordinates and spins, and the ‘‘Gutzwiller’’
projector PG projects out all doubly occupied atomic
states. A great deal of misinformation is in the literature
about this projection process, and we should emphasize
two points. The first is that it can be derived in principle by
a perturbation procedure as a nonsingular canonical trans-
formation of the Hamiltonian into block-diagonal form.
The transformation can, of course, be thought of as acting
on the wave function or the Hamiltonian equivalently; for
the canonically transformed Hamiltonian, the Gutzwiller
form of the wave function is necessary. Second, any per-
turbative admixture between the two subspaces of states
can only increase the separation to the ‘‘upper Hubbard
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band’’ of doubly occupied states and make the projection
more efficient.

The theory of the ‘‘freezing-out’’ process for the spins,
(sometimes called ‘‘Kondoization’’), has been the subject
of a considerable amount of literature, but that is not our
concern here. The introduction of the Gutzwiller projection
referred to above into the theory is due to Rice and Ueda
[2]; and the most reliable quantitative account of the pro-
cess of forming heavy-electron bands is given by the
approximate dynamical mean field theory of Kotliar and
Georges [3]. But what we are here concerned with is the
end product at low temperatures: the ground state and low
elementary excitations.

Most of the heavy-electron materials have either super-
conducting or magnetically ordered ground states. (Often
called ‘‘animal’’ and ‘‘mineral.’’) A few, however, persist
as supposed Fermi liquids to absolute zero; while also a
number have competing and incompatible magnetic and
superconducting orderings and therefore at the critical
point between them have, again, no order at all (vegetable).
While the effects we will discuss persist in altered form
into the other phases, it simplifies matters to study the case
of no ordering. Our method of proof is to assume there is a
Fermi liquid ground state and show that leads to a
contradiction.

A Fermi liquid may be treated as a noninteracting sys-
tem with quasiparticles described by Fermion operators
c�i;�, ci;� in site representation, and correspondingly

ck;� ¼ 1ffiffiffiffi
N

p X
i

e�ik�rici;�; (2)

etc., in momentum representation. The Green’s function is
defined in space-time as (omitting spin indices as irrele-
vant)

Gijðt; t0Þ ¼ �ih0jTðciðtÞc�jðt0ÞÞj0i; (3)

j0i is the ground state. (Most of what follows refers to the
site-diagonal Green’s function Gii, but the analytic struc-
ture is general.) G may also be represented in frequency-
momentum space by its Fourier transformGðk;!Þ.G has a
well-known representation in terms of the densities Að!Þ
and Bð!Þ of excited states accessed by adding or removing
one Fermion:

Gijð!Þ ¼
Z 1

0

�
AijðEÞ

!� Eþ i�
þ BijðEÞ

!þ E� i�

�
dE (4)

(we set the Fermi level at! ¼ 0). Here A and B are defined
by

AijðEÞ ¼ ð2�Þ3X
s

ð0jcijsÞðsjc�jj0Þ�ðE� "sÞ;

BijðEÞ ¼ ð2�Þ3X
s0
ð0jc�ijs0Þðs0jcjj0Þ�ð"s0 þ EÞ: (5)

That is, they are the densities of, respectively, electron and

hole eigenstates s and s’ at energy E accessed by applying
an electron or hole creation operator to the ground state.
From (4) and (5) we can derive the real and imaginary parts
of G and a dispersion relation between them:

ImGijð!Þ ¼ f��A;! > 0;�B;! < 0g

and ReGijð!Þ ¼ P

�

Z 1

�1
ImGð!0Þð!0Þ

!0 �!
d!0:

(6)

Equation (6) is not the conventional Hilbert transform
because the singularities of G cross the real axis at ! ¼
0; but correspondingly the coefficients of A and B change
sign at ! ¼ 0 and the integrand is normally nonsingular.
This absence of singularity is only assured if Að0Þ ¼ Bð0Þ,
a requirement which is taken for granted in the standard
texts [4] and is obviously true in the Fermi liquid, where
the hole quasiparticle is simply the negative of the electron
at the same momentum. What will be shown here is that
this is not true for projected electrons, i.e., spins, and that
therefore (6) is logarithmically infinite: the assumption that
there is a Fermi liquid with a finite step at the Fermi surface
can thus be shown to be mathematically inconsistent.
Let us consider the fermion creation and destruction

operators for an electron in the f shell on a particular site
i: c�i;� and ci;�. The presumed band state jk; �i will be
created or destroyed by a linear combination of these
operators as in Eq. (2). The matrix elements which enter
into the definitions (5) of A and B are those of these
operators, acting on the projected wave function �. The
reason for a difference is almost obvious: a hole can always
be created without violating the constraint, but an electron
often encounters an already-occupied site.
Formally,

c�i;�� ¼ ð1� PGÞc�PG�þ PGc
�PG�

and the first term is finite but creates states in the upper,
split-off Hilbert space which cannot contribute to A near
! ¼ 0; these states have "s near or above the large repul-
sion U. On the other hand, ci;�� ¼ PGci;�PG�, since it

cannot create double occupancy. Note that

PGc
�PG ¼ ðPGcPGÞ�: (7)

These operators are conjugates of each other and would
have equal A and B densities; c� and c do not.
To illustrate the difference let us make the ‘‘Gutzwiller

approximation’’ of assuming that �, like a simple Slater
determinant of Bloch waves, has no correlation of site
occupancies for opposite spins. (If there is a ‘‘correlation
hole’’ the numbers are modified but the structure is the
same. The basic point is that site occupancy probabilities
are not singularly dependent on momentum.) Let us define
a parameter x which is the number of holes relative to the
case of 1f electron per site. Every state s is equally
accessed by the local Fermion operator, and there are ð1�
xÞ=ð1þ xÞ fewer full states below EF than empty ones
above it, in the state �.

PRL 104, 176403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

30 APRIL 2010

176403-2



In the state�, on the other hand, there are only x empty
ones to ð1� xÞ=2 full ones, so that the weight of the terms
of Eq. (5) in A is reduced relative to those in B by the ratio

A=B ¼ g ¼ x

ð1� xÞ=2
1� x

1þ x
¼ 2x=ð1þ xÞ: (8)

There will thus be a logarithmic singularity in the real part
of G, according to Eq. (6), proportional to 1� g ¼ ð1�
xÞ=ð1þ xÞ (times the renormalization constant Z which
gives the height of the Fermi discontinuity, in case there
are many-body corrections).

The reasoning here is so close to simple arithmetic that it
seems difficult for trained theorists to comprehend. The
sum rule which follows from the commutator of c and c�
tells one that the total integral from �1 to 1 of Aii þ Bii

must be fixed at unity. By its definition, the integral of A is
the number density of holes and B that of electrons (assum-
ing for simplicity a single band). If we did not have any
strong interactions indeed these will match at kF. But B,
and not A, has amplitude in the split-off upper Hubbard
band, and this amplitude is not singularly dependent upon
k; so B must be less than A in the low-energy region,
specifically at the Fermi surface.

This singularity is obviously not allowable. In order to
demonstrate this I demonstrate that the wave-function
renormalization vanishes.

Zð!Þ ¼ ð1� @�=@!Þ�1 since G�1

¼ !�H0 � �;

Z ¼ ½@ðG�1Þ=@!��1

¼ ½�ð@G=@!Þ=G2��1

� !ðln2!Þ ! 0 as ! ! 0:

Since Z at the Fermi surface ! ¼ 0 measures the disconti-
nuity in nðkÞ, this contradicts the original assumption.

If Að! ¼ 0Þ is related to B by a constant ratio, as in (8),
the only way in which this singularity can be avoided is if
A ¼ B ¼ 0. The conjecture I have arrived at through more

complicated and less rigorous reasoning [5] is that the real
and imaginary parts of G have primarily a power law
dependence on ! for small values, with a small but finite
positive exponent. There is strong experimental evidence
for such a power law singularity in the case of the cuprates
(see Ref. [5]) but the direct measurement of the Green’s
function has not yet been carried out for heavy-electron
materials or the cuprates. Indirect evidence in the form of
transport anomalies does exist [6].
In the heavy-electron case, there has been much discus-

sion in the literature of possible ‘‘quantum critical point’’
effects. I feel that one must first clear up the effects of the
above universal critical behavior before speculating about
QCP’s. A question which will occur to many readers is why
the transport properties often resemble those of a Fermi
liquid except near QCP’s. As in the cuprates, this has to do
with details of the transport theory; our conjecture is that
there is a ‘‘hidden Fermi liquid’’ [7] which can constitute a
‘‘bottleneck’’ for relaxation processes in some circumstan-
ces, and make the latter look like those of a Fermi liquid.
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