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We investigate coherent population trapping in a strongly interacting ultracold Rydberg gas. Despite the

strong van der Waals interactions and interparticle correlations, we observe the persistence of a resonance

with subnatural linewidth at the single-particle resonance frequency as we tune the interaction strength.

This narrow resonance cannot be understood within a mean-field description of the strong Rydberg–

Rydberg interactions. Instead, a many-body density matrix approach, accounting for the dynamics of

interparticle correlations, is shown to reproduce the observed spectral features.
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Coherent population trapping (CPT), i.e., the population
of a quantum state decoupled from a resonant light field,
serves as a paradigm for a quantum interference effect [1].
First observed in 1976 [2], CPTwith its related phenomena
electromagnetically induced transparency (EIT) [3,4] and
stimulated Raman adiabatic passage (STIRAP) [5] has
provided the basis for a large variety of effects and appli-
cations in many areas of physics, such as high-resolution
spectroscopy, coherent control, metrology, quantum infor-
mation, and quantum gases. While CPT, EIT, and STIRAP
are generally described in terms of isolated single-atom
interactions with coherent light fields, the situation be-
comes more involved when interactions between the par-
ticles need to be considered.

To gain initial insights into the effects of interactions on
the quantum interference in CPT, consider two atoms with
a three-level ladder structure with states j1i, j2i, and j3i as
shown in Fig. 1(a). The atoms are exposed to two resonant
coherent light fields and interact only if both of them are in
the highly excited atomic state j3i. In the case of non-
interacting atoms the population accumulates in the two-
body product state of the single-particle dark state jdi
which is a coherent superposition of j1i and j3i [1]. This
state is defined as the eigenstate of the total Hamiltonian
with vanishing coupling to the coherent light field. When
turning on the interparticle interaction this state is no
longer a dark state as it is no longer an eigenstate of the
total Hamiltonian. As pointed out in [6], the two interacting
atoms, nevertheless, possess two dark states jd�i. These
states are dissipative due to the admixture of the intermedi-
ate, decaying state j2i, but are significantly populated by
optical pumping. While these states have dissipative char-
acter, they do not contain the state j33i and are, thus,
immune to interactions.

In a first approach to a many-particle system one could
apply a mean-field model by replacing many-body opera-
tors by products of their mean values thus neglecting
interparticle correlations. Figure 1(b) depicts the number

of atoms in state j3i as a function of the upper laser
detuning � and the pair distance, and compares the
mean-field result (upper panel) to a solution of the fully
correlated two-atom Bloch equations (lower panel). The
mean-field model predicts a shift and significant broad-
ening of the resonance line, due to the energy shift and
decoherence of state j3i induced by the mean-field inter-
action with the surrounding atoms. In contrast, the results

FIG. 1 (color online). (a) Excitation scheme (87Rb). �1 and
�2 are the Rabi frequencies at 780 and 480 nm, respectively, � is
the detuning of the upper transition; (b) calculated Rydberg state
population, produced by the two-step sequence described in the
text. The upper panel shows the result of a mean-field calcu-
lation, which predicts a strong shift and broadening of the
resonance line. On the contrary, the exact result within a two-
atom model (lower panel) yields an unshifted narrow interaction
independent resonance and an additional resonance at � ¼
VðRÞ=h with VðRÞ being the (repulsive) two-body interaction
energy at an interparticle distance R.
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of the two-atom model clearly indicate the population of
the dark state as a nonshifted resonance without significant
broadening. However, the states jd�i are nonseparable and
can therefore not be properly accounted for in the mean-
field model. The blueshifted resonance line in the two-
atom model can be assigned to the weakly populated
eigenstate containing a contribution of j33i which is prone
to interactions.

In this Letter we address the question to which extent a
narrow unshifted CPT resonance persists in a multiparticle
system with tunable interactions. More specifically, we
investigate the three-level excitation of a gas of Rydberg
atoms which are subjected to long-range van der Waals
interactions in the blockade regime [7–9]. Rydberg atoms
offer significant interparticle interactions over large dis-
tances which can be conveniently tuned by choosing the
appropriate excited Rydberg state [10]. The effect of the
interactions can further be controlled by changing the
density of ground-state atoms in the gas. Interaction-
induced dephasing [11] and loss mechanisms [12] on light
propagation in a Rydberg gas under EIT conditions have
recently been studied. The work presented here provides a
many-body approach which properly accounts for inter-
particle correlations induced by the long-range Rydberg
interactions.

In our experimental scheme the states j1i, j2i, and j3i are
represented by the atomic states 5S1=2ðF ¼ 2; mF ¼ 2Þ,
5P3=2ðF ¼ 3; mF ¼ 3Þ, and a Rydberg state nS of 87Rb

atoms which are coupled by resonant laser fields at 780 and
480 nm, respectively [see Fig. 1(a)]. The ground-state
atoms are trapped in a magneto-optical trap at a maximum
density of �0 ¼ 6:6� 109 cm�3. This maximum density
of atoms in state j1i can be reduced in a controlled way by
optical pumping (see Ref. [13]). The Rydberg atoms are
detected by field ionization. Further details on the experi-
mental setup can be found in Ref. [14].

We apply a double pulse excitation scheme where the
first pulse resonantly excites up to 20% of the ground-state
atoms to the Rydberg state. The resulting well-defined
mixture of atoms in the ground state and Rydberg state is
probed by scanning the blue laser frequency of the second
pulse. This initial partial excitation of the gas permits off-
resonant excitation of strongly interacting atom pairs [15]
during the second pulse, such that interaction effects are
more pronounced. The first excitation pulse with a duration
of 800 ns is realized by two circularly polarized counter-
propagating laser beams, resonant with the respective tran-
sitions with peak Rabi frequencies of �1 ¼ 7:6 MHz and
�2 ¼ 1:4 MHz, respectively. The lower (red) excitation
beam has a large beam radius (�1 mm), while the upper
(blue) beam is focused to a waist of � 37 �m. The red
Rabi frequency can thus be considered to be constant over
the narrow cylindrical excitation volume, while the blue
Rabi frequency varies radially. After the first excitation
pulse a second pair of laser pulses having the same beam
geometry, but independently adjustable Rabi frequencies,

probes the system with a pulse duration of 3 �s. While the
lower laser transition is still resonant (�1 ¼ 2:7 MHz), the
upper probe transition is scanned over the atomic reso-
nance with a Rabi frequency of �2 ¼ 1:4 MHz. For the
given parameters, on resonance the system is found close
to the steady state after the probe pulse. A similar Rydberg
excitation sequence has been employed in Ref. [15] to
probe energy shifts in a very dense sample with a detuned
second excitation pulse. In contrast to our experiment,
much shorter pulses were employed leading to a system
far away from the steady state.
As a signature of interparticle interactions, the excitation

blockade due to repulsive van der Waals interactions is
presented in Fig. 2. There is no excitation blockade ob-
served for the 30S state reflecting the n11 dependence of
the van der Waals interaction on the principal quantum
number n [10].
The corresponding CPT spectrum for the 30S state is

shown in Fig. 3(a). The observed CPT resonance can be
well described in terms of single-particle optical bloch
equations (OBEs) averaged over the Gaussian distribution
of the Rabi frequency �2. The finite laser linewidth and
redistribution of Rydberg states by blackbody radiation
have been included as additional decay processes.
Consistency of measurements with the prediction of the
OBEs was confirmed for various pulse sequences and Rabi
frequencies. Besides a scaling of the whole spectrum pro-
portional to the density we do not find any density-
dependent features in the spectra. In the regime of strong
Rydberg-Rydberg interactions (61S state with a van der
Waals coefficient C6 ¼ �1:18� 1021 a:u: [10]), as shown
in Fig. 3(b) the CPT spectra still exhibit a pronounced peak
with subnatural linewidth at zero detuning at all densities.
The width of the resonance slightly increases with density
as depicted by the squares in Fig. 4. The CPT resonance
width of �3 MHz is well below the natural linewidth of
the intermediate state j2i of 6.1 MHz. As can be deduced
from the comparison with the noninteracting 30S state
(circles in Fig. 4) the resonance width is mainly determined
by the finite laser linewidths.
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FIG. 2 (color online). Excitation blockade of the Rydberg state
61S (filled squares) in comparison to the excitation of the 30S
state (filled circles) after the first (resonant) excitation pulse.
While the 30S state shows no saturation, the solid line in the 61S
data shows a heuristic saturation function / 1=ð1þ �bl=�Þ from
which a blockade density �bl � 1:3� 109 cm�3 is derived.
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Our theoretical treatment of the excitation dynamics
starts from the corresponding Heisenberg equations for

the atomic population and transition operators �̂ðiÞ
�� ¼

j�iih�ij (�, � ¼ 1, 2, 3), where i ¼ 1; . . . ; N labels the
N atoms whose positions ri are randomly sampled from the
underlying density distribution. Taking expectation values
one obtains equations of motion for the reduced single-

atom, two-atom, etc., density matrices, �ðiÞ
�� ¼ h�̂ðiÞ

��i,
�ði;jÞ
��;�0�0 ¼ h�̂ðiÞ

���̂
ðjÞ
�0�0 i, respectively. The additional inter-

action terms result in a hierarchy of coupled equations that
ultimately requires knowledge of the N-atom density ma-
trix for an exact solution and thus needs to be truncated in
an appropriate way. The simplest possibility corresponds to

the mean-field approximation, �ði;jÞ
��;�0�0 ¼ �ðiÞ

���
ðjÞ
�0�0 þ

gði;jÞ
��;�0�0 � �ðiÞ

���
ðjÞ
�0�0 , i.e., the neglect of direct two-particle

correlations. Such mean-field treatments and slight mod-
ifications thereof [16–18] have been successfully applied
to model interaction-induced excitation suppression in
cold Rydberg gases. While being appealingly simple, the
resulting nonlinear, single-atom equations, however, imply
a unphysical distance-independent level shift for any finite
Rydberg excitation, which has more dramatic consequen-
ces for the shape of the excitation spectrum. As depicted as
dashed lines in Fig. 3(b) the mean-field treatment, incor-
porating the density profile as well as the spatial depen-
dence of the Rabi frequencies of the experiment, fails once
the excitation blockade sets in.

To account for two-atom entanglement within a
many-body description, the density matrix approach is
extended to second order, while approximately account-
ing for three-atom correlations. This is achieved by
truncating the hierarchy via the two-atom cluster ex-

pansion �ðk;i;jÞ
��;�0�0;�00�00 ¼ �ðkÞ

���
ði;jÞ
�0�0;�00�00 þ �ðiÞ

�0�0�
ðk;jÞ
��;�00�00 þ

�ðjÞ
�00�00�

ðk;iÞ
��;�0�0 � 2�ðkÞ

���
ðiÞ
�0�0�

ðjÞ
�00�00 þ gðk;i;jÞ

��;�0�0;�00�00 . Initially

neglecting direct three-atom correlations (i.e.,

gðk;i;jÞ
��;�0�0;�00�00), one obtains a closed set of dynamical equa-

tions, involving three-atom interaction terms of the type
X

k�i;j

Vjk�
ðk;i;jÞ
��;�0�0;�00�00 ¼

X

k�i;j

½Vjk�
ðiÞ
�0�0�

ðk;jÞ
��;�00�00

þ Vjk�
ðkÞ
��g

ði;jÞ
�0�0;�00�00

þ Vjk�
ðjÞ
�00�00g

ðk;iÞ
��;�0�0 �: (1)

The second and third terms vanish rapidly if one of the
three atoms is farther apart than the blockade radius from
the remaining pair, but diverge if all three atoms are
simultaneously very close to each other. This unphysical
small-distance behavior results from neglecting direct
three-atom correlations, which would cancel the respective
terms. To account for this fact in a simple way we disregard
the second and third interaction term in Eq. (1). This
procedure, corresponding to the so-called ladder approxi-
mation in kinetic theory [19], properly accounts for mutual
interactions of close and distant particles, and is approxi-
mate only if the mutual distances of more than two atoms
are simultaneously on the order of the blockade radius.
The solid dots in the middle graphs of Fig. 3(b) show the

results of this model qualitatively reproducing the experi-
mental data. The calculation reproduces the weak density
dependence of the resonance width (solid line Fig. 4)
regardless of the strong excitation suppression observed
for densities � > �bl (see Fig. 2). Again this stands in
pronounced contrast to the strong quadratic broadening
obtained from the mean-field calculations. The simulations
also reveal that the measured resonance widths are largely
limited by the spectral width of the excitation lasers as seen
from comparison with the dash-dotted line in Fig. 4 giving
the genuine CPT resonance width.
The persistence of the narrow resonance may be quali-

tatively understood from the two-atom dark state [6] dis-
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FIG. 3 (color online). (a) Probe scan of the 30S Rydberg state (upper graph) and simulation using one-atom optical bloch equations
(lower graph), averaged over the Gaussian distribution of�2. The 30S state is subject to stronger decay and redistribution than the 61S
state, which is why the dip in the signal around the central peak is less pronounced. (b) Upper graphs: Similar scans for the 61S
Rydberg state at different densities. Middle graphs: Theoretical spectra, obtained from the density matrix expansion (red dots) and
from the mean-field calculation (green dashed lines). Lower graphs: Theoretical spectra considering only interacting pairs. All
calculations have been performed using the experimental parameters. Densities are given relative to �bl ¼ 1:3� 109 cm�3.
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cussed above. In order to intuitively elucidate the role of
many-particle effects, we also consider the excitation dy-
namics for pairs of interacting atoms. Assuming that the
interaction shift of each atom is solely determined by its
nearest neighbor, one may calculate the pair spectrum for
variable distances, averaged over the nearest neighbor
distribution of the random gas. As shown in Fig. 3 the
pair model provides the basic mechanism for the
interaction-resistant narrow resonance. As may be antici-
pated from Fig. 1, the predicted linewidth becomes, how-
ever, density independent for � > �bl, in contrast to the
experimental observation. This is due to the oversimplified
neglect of fluctuating, simultaneous interactions between
several atoms, and more importantly interactions between
blocked pairs, or larger numbers, of atoms. The improved
agreement obtained using our reduced density matrix ap-
proach, that accounts for these processes, thus, highlights
the importance of many-body effects.

In conclusion, we have presented an experimental
scheme to investigate the role of interactions in a CPT
scheme. As suggested by the occurrence of an entangled
dark state in a two-body model, the interaction-induced
correlations between the atoms cannot be accounted for by
a mean-field model, and require a more sophisticated
many-body theory. The theoretical framework developed
in this Letter reproduces the observed density-dependent
features of CPT resonances and complements current nu-
merical methods that are limited to small samples and very
small numbers of Rydberg excitations [17,20,21]. The
concepts of CPT and EIT in systems exhibiting Rydberg
interactions are currently attracting much interest in the
context of quantum information, quantum simulation, and
sensitive probing of electric fields [6,22–24]. Therefore the
understanding of interaction effects is of crucial impor-
tance. The presented theory, supported by the reported
experiments, may serve as a valuable basis for future

studies of light propagation and EIT in interacting media,
addressing questions concerning optical nonlinearities and
photon correlations.
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FIG. 4 (color online). The width of the narrow line in the
measured 61S spectra (red squares) shows a weak density
dependence and lies below the natural linewidth of the inter-
mediate state. In comparison, the noninteracting 30S state does
not show a significant change of the linewidth with density (blue
circles). The many-body simulation (solid red curve) reproduces
the slight increase of the linewidth for 61S whereas the mean-
field model (dashed green line) predicts a much stronger density
dependence. The black dash-dotted line shows the simulation
results for vanishing laser linewidths. All values are FWHM
determined from fitting the sum of two Gaussians of opposite
sign.
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