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We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting

on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a

wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force-

measurement process is prone to artifacts if the noise is not correctly taken into account.
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The concept of force plays a central role in our under-
standing of nature. Because of the ongoing trend towards
miniaturization, the investigation of forces relevant at mi-
croscopic and nanoscopic length scales is attracting an
increasing amount of attention. Examples range from the
elastic properties of biomolecules [1] to Casimir forces [2].
Instrumental in such trend has been the invention of new
methods to measure ultrasmall forces in a range down to
few femtonewtons [3,4]. Apart from the technological
challenge intrinsic to measuring such minute forces, it is
important to realize that the general concept of how forces
are measured in macroscopic systems cannot be simply
scaled down to nanoscopic objects, mainly due to the
presence of thermal noise affecting the motion of small
objects (Brownian motion). As will be demonstrated be-
low, force measurements in the presence of thermal noise
are prone to artifacts, unless the noise is properly taken into
account. However, despite the great number of experiments
measuring forces in microscopic systems, the role of noise
has not been adequately addressed yet.

In this Letter, we measure the forces acting on a
Brownian particle in front of a wall: using two widely
employed force-measurement methods, we obtain strongly
contrasting forces, which deviate in their magnitude and
even their sign. We track this disagreement down to a well-
known mathematical controversy about the interpretation
of stochastic differential equations in the presence of a
diffusion gradient and we demonstrate how experimental
data should be analyzed in order to obtain the correct
underlying forces and to avoid artifacts.

When a microscopic body is suspended in a liquid,
viscous forces prevail by several orders of magnitude
over inertial effects [5]. The presence of a constant external
force F in such an overdamped system results in a constant
particle drift velocity vd ¼ F=�, where � is the particle’s
friction coefficient. Since vd ¼ dz=dt can be retrieved
from the measured particle displacement dz within time
dt, the force can accordingly be measured as F ¼ �vd. In
the case of large forces, this obviously leads to a univocal
result. However, when the force exerted on the object is
comparable or even smaller than the random forces due to

the permanent collisions with the surrounding liquid mole-
cules, a different value of the force is measured in each
experiment. Typically, one can average over many inde-
pendent measurements

�F ¼ � �vd; (1)

where we define �vd ¼ 1
dt hdzji and j denotes the jth experi-

mental value.
Indeed, Eq. (1) is key in nonequilibrium force measure-

ments, e.g., studying the relaxation of biomolecules [6–8],
colloidal interactions [9,10], or Brownian motion in non-
conservative force fields [11–13]. It must be emphasized,

FIG. 1 (color online). (a) A Brownian particle (drawn not to
scale) diffuses near a wall in the presence of gravitational and
electrostatic forces. Its trajectory perpendicular to the wall is
measured with TIRM. (b) Comparison of measured (bullets) and
calculated (line) vertical diffusion coefficient as a function of the
particle-wall distance. (c) Experimentally determined probabil-
ity distribution of the local drift dz for dt ¼ 5 ms at z ¼ 380 nm
(grey). The dashed line is a Gaussian in excellent agreement with
the experimental data.
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however, that Eq. (1) is only valid for a spatially homoge-
neous diffusion coefficient D of the object to which the
force is applied; within linear response, this is related to its
friction by D ¼ kBT=� [13]. Generally, Eq. (1) does not
hold when D varies with position, e.g., due to hydrody-
namic interactions between the particle and nearby walls or
other particles, a situation often encountered in experi-
ments. It has been shown that such spatial variations in
the diffusion coefficient have to be explicitly considered
when numerically computing the particle trajectory
[14,15]. As a consequence, application of Eq. (1) leads to
erroneous forces, which may severely affect the physical
interpretations of experimental data.

To demonstrate the effect of noise on force measure-
ments, we experimentally study a colloidal particle (di-
ameter 2R ¼ 1:31� 0:04 �m, density �p ¼ 1:51 g=cm3,

MF-F-1.3, Microparticles GmbH) immersed in water (den-
sity �s ¼ 1:00 g=cm3) and diffusing in a closed sample
cell above a planar wall, placed at z ¼ 0 [Fig. 1(a)]. This is
arguably the simplest realization of a diffusion gradient.

The particle’s trajectory perpendicular to the wall zðtÞ
[Fig. 1(a)] is sampled with nanometer resolution at a
sampling rate of 1 kHz over 200 minutes employing a
single particle evanescent light scattering technique known
as total internal reflection microscopy (TIRM) [16,17]. A
p-polarized laser beam (� ¼ 658 nm) is totally internally
reflected at a glass-liquid interface generating an evanes-
cent field decaying into the liquid. The particle’s trajectory
is obtained from the scattering intensities, which depend on
its position relative to the interface.

All conservative forces acting on the particle are [16]

FðzÞ ¼ Be��z �Geff : (2)

The first term is due to double-layer particle-wall forces,
with ��1 ¼ 18 nm the Debye length (300 �M NaCl salt)
and B a prefactor depending on the surface charge den-
sities. The second term accounts for the effective gravita-
tional contribution Geff ¼ 4

3�R
3ð�p � �sÞg, with g the

gravitational acceleration constant.
Far away from any surface, the diffusion coefficient of a

spherical particle is D1 ¼ kBT=6��R, where � is the
liquid shear viscosity. Close to a wall, however, the diffu-
sion coefficient sharply decreases due to hydrodynamic
interactions. From the solution of the corresponding creep-
ing flow equations, one obtains an analytical expression for
D?ðzÞ, the component of D perpendicular to the wall [18],
which is plotted for our experimental conditions as solid
line in Fig. 1(b). The corresponding data obtained from the
experimentally measured particle trajectory according
to the conditional average D?ðzÞ ¼ 1

2dt h½zðtþ dtÞ �
zðtÞ�2 j zðtÞ ¼ zi [19,20] [symbols in Fig. 1(c)] show ex-
cellent agreement with the theoretical prediction; due to
the particle-wall electrostatic repulsion, only distances
above 180 nm are sampled.

Since in our system the force depends on z, the average
drift velocity �vd in Eq. (1) has to be replaced by its local
value �vdðzÞ ¼ 1

dt hzðtþ dtÞ � zðtÞ j zðtÞ ¼ zi. The time in-

terval dt for which the displacement is considered has to be
sufficiently small to guarantee that the force acting on the
particle can be treated as locally constant. In our experi-
ments, this condition is met for dt � 10 ms. Figure 1(c)
shows the probability distribution of vd for dt ¼ 5 ms and
z ¼ 380 nm, which almost perfectly agrees with a
Gaussian distribution and thus confirms that within such
small time steps, the spatial variation of the force can be
neglected. After having replaced the constant friction co-
efficient in Eq. (1) with its local value �ðzÞ ¼ kBT=D?ðzÞ,
one finally obtains the local force �FðzÞ acting on the
particle. The result is shown as bullets in Fig. 2.
Since our system is in thermal equilibrium, the forces

acting on the particle can be also obtained from the
measured particle-wall interaction potential UðzÞ ¼
�kBT lnpðzÞ, where pðzÞ is the experimental particle’s
position equilibrium distribution. Contrary to �FðzÞ, this
approach is valid independently of the additional presence
of hydrodynamic interactions. The corresponding force
FðzÞ ¼ � d

dz UðzÞ is shown as squares in Fig. 2, and system-

atic deviations from �FðzÞ are evident. In addition, the
force-distance relation obtained via the pðzÞ is in quanti-
tative agreement with Eq. (2) (solid line in Fig. 2), where
Geff and ��1 are taken from the experimentally known
parameters. The prefactor B has been treated as a fit
parameter, and its value B ¼ 770 pN is in good agreement
with other TIRM experiments under similar conditions
[16]. In the following, we discuss the reason for this
discrepancy providing a simple method to correctly inter-
pret the results of nonequilibrium measurements and to
reliably measure forces.
The motion of a Brownian particle can be described by a

stochastic differential equation (SDE) where a random
function is added to an ordinary differential equation
(ODE) [21]. This approach was introduced at the begin-

FIG. 2 (color online). Comparison of forces obtained from
local drift-velocity measurements of a Brownian particle accord-
ing to Eq. (1) (bullets) and measured from the equilibrium
particle height distribution (squares). The solid line corresponds
to a fit to Eq. (2).
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ning of the 20th century by Smoluchowski, Einstein,
Langevin, and Kolmogorov [22–24] and put on a firmer
mathematical ground in the 1950s and 1960s by Itō and
Stratonovich [25,26]. For a Brownian particle in the pres-
ence of a variable diffusion coefficient D?ðzÞ, e.g., near to
a wall, the corresponding SDE reads

dz ¼ FðzÞ
�ðzÞ dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?ðzÞ
q

dW; (3)

where W is a Wiener process, i.e., a stochastic process
almost surely continuous, almost nowhere differentiable,
and whose increments dW are stationary, independent, and
normally distributed [21]. Integration of Eq. (3) yields

zðTÞ ¼ zð0Þ þ
Z T

0

FðzÞ
�ðzÞ dtþ

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?ðzÞ
q

dW: (4)

Because of the irregularity of the Wiener process, the
value of the stochastic integral on the right-hand side
(rhs) is ambiguous. It is defined as the limit of inte-
gral sums where the integrand is evaluated inside each
bin at a given position parametrized by � 2 ½0; 1�,
i.e.,

R

T
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?ðzÞ
p

dWj� ¼ limN!1
P

N
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?½zðtnÞ�
p

�Wn,

where tn ¼ nþ�
N T. Since W is a function of unbounded

variation, differently from ordinary Riemann-Stieltjes in-
tegrals, this leads to different values for each choice of �.
A loose understanding of such indetermination can be
gained by considering W as a random sequence of pulses,
each having an infinitesimal duration, but still a finite
amplitude; the value of � determines at which position
during each jump the integrand should be evaluated [27].
Common choices are � ¼ 0 (the Itō integral), � ¼ 0:5
(Stratonovitch integral), and � ¼ 1 (anti-Itō or isothermal
integral). This is in sharp contrast to ODEs, which have a
univocal interpretation.

The values of stochastic integrals for different � are
related to each other by a precise mathematical relationship
[28]. For example, the solution of Eq. (4) can always be

written as an Itō integral to which an �-dependent correc-
tion term is added

zðTÞ ¼ zð0Þ þ
Z T

0

FðzÞ
�ðzÞ dtþ

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D?ðzÞ
q

dWj0

þ �
Z T

0

dD?ðzÞ
dz

dt: (5)

From this, one obtains the particle drift velocity

�v dðzÞ �
�FðzÞ
�ðzÞ ¼

FðzÞ
�ðzÞ þ �

dD?ðzÞ
dz

: (6)

The first term on the rhs is the deterministic drift due to the
‘‘real’’ forces acting on the particle, while the second term
represents a noise-induced drift. Obviously, the latter only
disappears when the diffusion coefficient is homogeneous;
otherwise, it has to be accounted for in deducing the forces
FðzÞ acting on a particle from its measured drift velocity
�vdðzÞ. We remark that, while an equilibrium measurement
of the potential constitutes a unambiguous means to ex-
perimentally determine the forces, in nonequilibrium situ-
ations, it is not a priori clear which value of � should be
used, and therefore it is not a priori clear how such noise-
induced drift has to be considered in nonequilibrium
experiments.
From the theoreticalD?ðzÞ [5], one immediately obtains

the noise-induced drift � dD?ðzÞ
dz , which is plotted as lines

for � ¼ 0, 0.5, 1 in Fig. 3. In order to determine which
value of � is valid in our experiment, we have calculated
the noise-induced drift from the experimentally measured
forces. According to Eq. (6), it is determined from the
difference of the forces obtained from the drift-velocity
measurement and from the equilibrium potential measure-
ment, both presented in Fig. 2, i.e., ½ �FðzÞ�FðzÞ�=�ðzÞ. The
experimental data (symbols in Fig. 3) show good agree-
ment with the noise-induced drift obtained for � ¼ 1, i.e.,

FIG. 3 (color online). Calculated noise-induced drift (lines) for
different values of �. The symbols correspond to the experimen-
tally determined noise-induced drift.

FIG. 4 (color online). Forces obtained from a drift-velocity
experiment with added noise-induced drift [see Eq. (7) with � ¼
1 (open squares), � ¼ 0:5 (open triangles), and � ¼ 0 (open
dots)]. The solid squares represent the forces obtained from an
equilibrium measurement (same as in Fig. 2).

PRL 104, 170602 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

30 APRIL 2010

170602-3



the isothermal integral. All other choices of �, in particu-
lar, negligence of noise-induced drift (� ¼ 0), lead to
significant differences.

In Fig. 4, we have plotted as open symbols

�FðzÞ � ��ðzÞdD?ðzÞ
dz

; (7)

i.e., the experimental �FðzÞ (open symbols in Fig. 2) with a
correction term for � ¼ 1 (squares), � ¼ 0:5 (triangles),
and � ¼ 0 (bullets), respectively. It should be emphasized
that not only the absolute value but even the sign of the
force depends on the choice of �. As closed symbols, we
have superimposed the forces FðzÞ obtained from the
particle probability distribution (same as solid symbols in
Fig. 2), which shows good agreement for � ¼ 1. Since the
gradient of the diffusion coefficient vanishes far away from
the surface, the force dependence on � is most pronounced
close to the wall but weakens at larger z.

Our experiments clearly demonstrate that the presence
of noise-induced drift has to be considered in nonequilib-
rium force measurements; otherwise, this can lead to arti-
facts in the measured forces, which may even suggest the
wrong sign of the force. While the correction is in our case
on the order of several femtonewton, it becomes more
significant in the presence of larger diffusion gradients,
i.e., for shorter particle-wall distances or for smaller parti-
cles. We stress, furthermore, that a constant diffusion can
be assumed only for a particle far from any boundary. Such
boundaries are naturally introduced by surfaces or by other
particles in suspension, a situation that is typically met in
experiments.

In the cases in which thermodynamic consistency must
be satisfied, � ¼ 1 is the correct choice [29,30]. This is
particularly true for the experimental system we have
investigated, i.e., a colloidal particle performing
Brownian motion coupled to a thermal bath. Indeed, the
convention � ¼ 1 is the only one naturally leading to the
usually accepted steady-state probability distribution;
other conventions require the addition of a spurious drift
term to the Langevin equation to account for the noise-
induced drift [30]. One is also naturally led to the con-
vention � ¼ 1 when considering the vanishing mass limit
of the second-order Smolukowski equation, which, despite
containing a random term, has an unambiguous interpre-
tation even in the presence of a diffusion dependent on
position, but not on velocity. We remark, however, that in
case of a velocity-dependent diffusion coefficient, also the
interpretation of the Smolukowski equation becomes am-
biguous [31].

In a more general sense, the value of � depends on the
system under study [32]. What works for the motion of a
Brownian particle might not be appropriate for the descrip-
tion of other stochastic processes, e.g., stock market be-
havior or ecosystem dynamics. This study does not claim
to find out which is the ‘‘right’’ value of � for all the
situations modeled by SDEs. Nonetheless, it demonstrates

that the intrinsic ambiguity of SDEs with multiplicative
noise is indeed amenable to experimental scrutiny, and it
may clear the way for similar studies in other fields that
make an intensive use of SDEs, such as economics and
biology.
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