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(Received 8 March 2010; revised manuscript received 1 April 2010; published 27 April 2010)

Applying adiabatic, cyclic two-parameter modulations we investigate quantum heat transfer across an

anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat

typically exhibits a Berry-phase effect in providing an additional geometric contribution to heat flux.

Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence

of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the

Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase

contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.
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Understanding and controlling of heat transfer due to
phonons occurring in low dimensional nanoscale systems
is both of prime and practical importance [1]. Pioneering
experimental works carried out recently, such as nanotube
thermal rectifier [2], nanotube phonon waveguide [3] has
spawn phononics, i.e., the science and engineering of
phonons [1], as an emerging new scientific discipline
where heat flow can be manipulated as flexibly as elec-
tronic current. Although the nonlinear (anharmonic) inter-
action has been demonstrated as a crucial component [4,5]
in various functional thermal devices, the heat control has
heretofore typically been achieved by applying a tempera-
ture bias, for which in accordance with the second law of
thermodynamics—heat flows from ‘‘hot’’ to ‘‘cold’’
spontaneously.

Recent studies show that spontaneous, rare fluctuations
of anomalous heat transfer may occur [6], thus being
seemingly in apparent violation with the second law.
Clearly, however, no violation of the second law occurs
on average. The typical measure of such violations is the
(small) probability for such anomalous events as they
emerge from a heat exchange fluctuation theorem (FT)
[6–9]. The FT for (nonequilibrium) entropy produc-
tion [10,11] and heat flux [7,8] describes that the dis-
tribution, P�ðQÞ, of the heat Q transferred from the left
(L) bath at temperature TL to the right (R) bath at TR

over a long time interval �, obeys the relation:
lim�!1��1 ln½P�ðQÞ=P�ð�QÞ� ¼ Qð�R � �LÞ=�, where
�L;R ¼ 1=kBTL;R. This FT thus shows explicitly that heat

can transfer spontaneously from cold to hot with finite,
although typically with very small probability. In particu-
lar, Ref. [8] demonstrates this FT in the quantum case for
heat transfer across a quantum harmonic chain coupled
with thermal reservoirs. A particular challenge that arises
is then whether this quantum Gallavotti-Cohen type FT
remains valid also in the nonlinear quantum regime beyond
the quantum harmonic chain limit, and, more generally,

whether such a heat-flux FT still can be formulated in
presence of cyclic time-dependent manipulations of certain
control parameters.
In the context of time-dependent manipulations various

molecular heat pumps have been proposed to efficiently
control heat flux against thermal gradients at the nanoscale.
In all those cases the system is driven far away from
equilibrium by use of an external modulation imposed on
system parameters. For example, a molecular model with
modulated energy levels, has been found to operate as a
heat pump [12]. Likewise, a spin system leading to the heat
pumping has been studied with Ref. [13]. Other schemes
investigated pumping of heat in electronic nanoscale de-
vices by applying time-periodic laser fields [14]. More-
over, Brownian heat motors fueled by oscillating tempera-
tures have recently been devised as well [15,16]. Given
such time-dependent manipulations one may therefore
scrutinize whether the physics of a nonvanishing geometric
phase does impact the transfer of heat under external

FIG. 1 (color online). A schematic representation of the an-
harmonic molecular junction. Quantum heat transfer is generated
via a dynamics of excitation and relaxation of the local single
mode. The heat flux J from the center to the right bath is defined
as positive.
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modulations. If so, what is its impact on the existence of a
heat-flux FT?

In this Letter, we shall answer these above mentioned
objectives by studying quantum heat transport across an
anharmonic molecular junction model. We start with a
system consisting of a molecular junction coupled to two
thermal baths [12], as illustrated in Fig. 1. The total
Hamiltonian Htot is composed of the following contribu-
tions: Htot ¼ HS þHL

B þHR
B þ VL

SB þ VR
SB: system

Hamiltonian HS ¼ P
N�1
n¼0 Enjnihnj, with En ¼ n@!0,

where we assume that heat transport is dominated by a
single mode and thus consider a two-level system (N ¼ 2)
to simulate the strong nonlinearity [17]. If N ! 1, the
system reduces to the quantum harmonic case. The two
thermal baths are represented by sets of independent har-

monic modes, i.e., H�
B ¼ P

k@!kb
y
k;�bk;�, with � ¼ L, R,

where byk;�, bk;� are the bosonic creation and annihilation

operators associated with the phonon mode k of bath �.
The system-bath interactions is taken to be bilinear, i.e.,

V�
SB ¼ B�

P
N�1
n¼1

ffiffiffi
n

p jnihn� 1j þ c:c:, B�¼
P

k�k;�ðbyk;�þ
bk;�Þ, where the system-bath interaction is characterized by

the phonon spectral function ��ð!Þ ¼ 2�
P

k�
2
k;��ð!�

!kÞ. In the following, we use wide-band limit ��ð!Þ ¼
��. As shown with Ref. [17], in the limit of fast dephasing
and using the Redfield approximation for weak system-
bath coupling, the underlying dynamics can be modeled as
follows:

_p 1ðtÞ¼�p1ðtÞðkL1!0þkR1!0Þþp0ðtÞðkL0!1þkR0!1Þ: (1)

Here, pnðn ¼ 0; 1Þ denotes the probability of the molecule
to occupy the state jni, satisfying p0ðtÞ þ p1ðtÞ ¼ 1. The
activation and relaxation rates read

k�0!1 ¼ ��N�ð!0Þ; k�1!0 ¼ ��½N�ð!0Þ þ 1�; (2)

where N�ð!0Þ ¼ ½e��@!0 � 1��1 is the Bose-Einstein oc-
cupation probability. Finally, the steady-state heat flux at
the right contact (being equal to the heat flux at the left
contact) is expressed as

J ¼ @!0½ps
1k

R
1!0 � ps

0k
R
0!1�; (3)

where the superscript s means the steady state. The first
term denotes the energy flux going from the molecule into
the bath Rwhile the second term provides the opposite heat
flux from the bath R back into the system.

Geometric Berry-phase-induced heat pumping.—For
heat pump operation, the molecular junction connected to
the two reservoirs is subjected to cyclic parameter modu-
lations. This could be realized by imposing a modulation
on either of the following parameters: !0ðtÞ, �LðtÞ, �RðtÞ,
TLðtÞ, TRðtÞ. Throughout the following, the modulations
acting on such system parameters are assumed to be slow,
i.e., we employ adiabatic modulations. Let the period of
modulation be T p ¼ 2�=�. The typical frequency for a

carbon-carbon bond is 1:4� 1014 s�1 [18]. �� is around
1015 s�1, according to the measurement with alkane mo-

lecular junction [19]. The relaxation time for fast thermal-
ization usually is on the order of a few fs or ps. Thus, the
modulation time scale must obey 2�=� � 1 ps. In this
way, the assumption of adiabatic modulation is valid when-
ever the driving frequency � � 1 THz.
Of prime interest is the heat flux from the molecule into

the bath R during the long time span �. This is achieved
upon introducing the characteristic function for the phonon
counting field �, i.e., [20,21]

Z �ð�Þ ¼
X1

q¼�1
P�ðqÞeiq� ¼ 1yT̂½e�

R
�

0
H ð�;tÞdt�pð0Þ; (4)

H ð�; tÞ ¼: kL0!1 þ kR0!1 �kL1!0 � kR1!0e
i�

�kL0!1 � kR0!1e
�i� kL1!0 þ kR1!0

" #
;

(5)

where P�ðqÞ is the probability distribution of having heat
Q ¼ q@!0 transferred from the molecule into the bath R

during time � ! 1. Here, 1y ¼ ½1; 1�, T̂ denotes the time-
ordering operator, and pð0Þ ¼ ½p0ð0Þ; p1ð0Þ�T are the ini-
tial occupation probabilities. Then, the cumulant generat-
ing function is obtained as Gð�Þ � lim�!1��1 lnZ�ð�Þ,
which generates the heat current via the relation J ¼
@!0@Gð�Þ=@ði�Þj�¼0. Denote by �0ð�; tÞ the instanta-

neous eigenvalue of H ð�; tÞ with the smallest real part
and jc 0ð�; tÞi (h’0ð�; tÞj) the corresponding normalized
right (left) eigenvector. The cumulant generating function
takes on the following form, being composed of two parts
[21,22], namely,

Z �ð�Þ � e�G ¼ e�ðGdynþGgeomÞ; (6)

G dyn ¼ �T �1
p

Z T p

0
dt�0ð�; tÞ; (7)

G geom ¼ �T �1
p

Z T p

0
dth’0j@tjc 0i: (8)

The first contribution Gdyn presents the temporal average

and defines the dynamic heat transfer. This is the only term
which survives in the static limit. The second, geometric
part Ggeom presents an additional contribution caused by

the adiabatic cyclic evolution. As we shall see it is this part
which possesses a nontrivial geometric interpretation. Let
us rewrite Ggeom as a line integral over the closed contour

R in the parameter space u:

G geom ¼ �T �1
p

I
R
du �Au; (9)

with Auð�Þ ¼ h’0ðuÞj@ujc 0ðuÞi. Thus, this is an analog
of a Berry phase [23], which does not contain time t
explicitly and only depends on the geometry of the modu-
lation contour in the parameter space u. In the case of two
parameters being modulated, say u1, u2, using Stokes
theorem, we find
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G geom ¼ �T �1
p

ZZ
SR

du1du2F u1u2 ; (10)

where SR is the integral area enclosed by the contour R.

F u1u2 ¼ h@u1’0j@u2c 0i � h@u2’0j@u1c 0i (11)

is an analog of the gauge invariant Berry curvature [23].
Let us next specify the case that the bath temperatures

TLðtÞ, TRðtÞ are subjected to adiabatic modulations. Then
Eq. (11) yields the Berry curvature in temperature space,
reading

F TLTR
ð�Þ ¼ �CLCR

2i sinð�Þ�L�Rð�L þ �RÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 4D

p
Þ3 ; (12)

where C� ¼ kB�
2
�@!0e

��@!0N2
�, K ¼ �Lð1þ 2NLÞ þ

�Rð1þ 2NRÞ, D ¼ �L�RNLNRðe�R@!0eþ� þ e�L@!0e��Þ
with e	� � e	i� � 1. Upon substituting this Berry curva-

ture into Eq. (10), the total heat flux emerges as

Jtot ¼ @!0

@½Gdynð�Þ þGgeomð�Þ�
@ði�Þ

���������¼0
¼ Jdyn þ Jgeom;

Jdyn ¼ @!0

T p

Z T p

0
dt

�L�RðNL � NRÞ
K

; (13)

Jgeom ¼ @!0

T p

ZZ
SR1

dTLdTR

�@F TLTR
ð�Þ

@ði�Þ
���������¼0

; (14)

where

� @F TLTR
ð�Þ

@ði�Þ
���������¼0

¼ 2CLCR�L�Rð�L þ �RÞ
K3

: (15)

The dynamic part Jdyn just coincides with the temporal

average of the heat flux obtained from J � JðtÞ in Eq. (3).
The geometric part Jgeom is the additional heat flux that

results from the nontrivial Berry-phase effect. The ratio of
this geometric heat flux and the dynamic one is typically
about �=��. To avoid that Jgeom is masked by Jdyn, we

choose a symmetric molecular junction with �L ¼ �R, and
modulate TLðtÞ, TRðtÞ as indicated by the circle contour in
Fig. 2(a). Then one finds that Jdyn � 0 and Jgeom � 0, see

Fig. 2(b), so that the Berry-phase-induced Jgeom dominates

the heat transport. This is the case for which the geometric
phase effect on heat transport is distinctly experimentally
detectable. As a main finding we have that the Berry-phase
effect acts as a heat pump, providing an additional heat flux
across the molecular junction even though on average no
thermal bias acts and the system is symmetric. Note also,
distinct from the irreversible heat flux Jdyn, Jgeom is

time reversible, i.e., under the time-reversed modulation
(t ! �t) the Berry-phase induced heat flux just reverses
sign.
Fractional quantization of phonon response.—Remark-

ably, we find a fractional quantized phonon response for
large temperature driving: the integral in Eq. (14) can be
rewritten as

R1
0

R1
0 dNLdNR2�L�Rð�L þ �RÞ=K3 ¼ 1=4,

yielding [22]

Jgeom ¼ 1
4@!0=T p: (16)

This 1=4 fractional quantized geometric phonon response
is robust since it does not depend on the specific values of
@!0, �L, �R. It means that the geometric phase effect
caused by two bath temperature modulations is able to
pump maximally on average one phonon @!0 per four
cycles.
Impact on heat-flux fluctuation theorem.—Besides the

dynamic Gdyn, Ggeom will generally not only contribute

additionally to the average heat transfer but also impact the
higher moments of the heat current (such as the phonon
counting statistics) and other heat transport characteristics
as well. In the following, we study its impact on the heat-
flux fluctuation theorem. Before doing so, let us address
first the static situation with Ggeomð�Þ � 0, yielding

G ð�Þ ¼ Gdynð�Þ ¼ ��0ð�Þ ¼ �K þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 4D

p

2
: (17)

Then, �0 obeys the Gallavotti-Cohen (GC) symmetry [24]
[and alike for Gdynð�Þ, Gð�Þ and Z�ð�Þ], reading

�0ð�Þ ¼ �0ð��þ i�
Þ; (18)

where �
 ¼ ln½ðkL0!1k
R
1!0Þ=ðkR0!1k

L
1!0Þ�. In virtue of

Eq. (2), yielding the detailed balance relation k�0!1 ¼
k�1!0e

���@!0 , we find that �
 ¼ @!0ð�R � �LÞ. Via an

inverse Fourier transform of Eq. (4), this GC symmetry
results in the quantum FT of heat transport for an anhar-
monic molecular junctions, reading with Q ¼ q@!0:

lim
�!1

1

�
ln

�
P�ðQÞ
P�ð�QÞ

�
¼ Qð�R � �LÞ=�; (19)

which precisely coincides (without any correction) with
the result for the quantum harmonic chain [8]. This FT
gives the probability of observing spontaneous ‘‘second
law violation’’: Assume TL < TR, i.e. �


 < 0; the upper

FIG. 2 (color online). (a) The contour map of
�@F TLTR

ð�Þ=@ði�Þj�¼0, for �L ¼ �R and @!0 ¼ 25 meV.

The (blue) circle with an arrow denotes the path of two-
parameter temperature modulations: TLðtÞ ¼ 200þ
100 cosð�tþ �=4Þ, TRðtÞ ¼ 200þ 100 sinð�tþ �=4Þ. The in-
tegral area SR is within the circle. (b) Pure Berry-phase induced
heat current: Jtot ¼ Jgeom (Jdyn ¼ 0). The straight line is the

analytical result from Eq. (14), while the open circles give the
simulation results by integrating Eq. (1).
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bound to observe the violation for spontaneous heat trans-
fer from (left) cool to (right) hot is estimated asR1
c dqP�ðqÞ ¼

R1
c dqP�ð�qÞeq�
 � ec�



. It indicates

that in absence of external modulations, the probability
of at least c phonons (or net energy c@!0) transporting
against the thermal bias is nonvanishing detectable,
although decaying exponentially.

For the time-modulated system the GC symmetry ceases
to hold when Ggeomð�Þ � 0. For example, in the case of

cyclic temperature modulations TLðtÞ and TRðtÞ, the Berry
curvature F TLTR

ð�Þ contains the factor sinð�Þ, which ex-

plicitly breaks the GC symmetry ofGgeomð�Þ, and alike for
Gð�Þ and Z�ð�Þ. Thus, the FT Eq. (19) becomes violated
as a consequence of a geometric phase induced breakdown
of GC symmetry. Moreover, even for parameter modula-
tions yielding Ggeomð�Þ ¼ 0, and with time-dependent

�
 ! �
ðtÞ, the GC symmetry for Gdynð�Þ ¼
�T �1

p

RT p

0 dt�0ð�; tÞ generally cannot be recovered, de-

spite �0ð�; tÞ ¼ �0ð��þ i�
ðtÞ; tÞ.
Interestingly, we find that for time modulations of the

system-bath couplings �LðtÞ, �RðtÞ the detailed balance
relation k�0!1=k

�
1!0 ¼ e���@!0 remains intact, thus provid-

ing a vanishing Berry curvature F �L�R
ð�Þ � 0.

Meanwhile, with the resulting time-independent �
ðtÞ ¼
�
, one finds that the GC symmetry of Gdynð�Þ ¼
�T �1

p

RT p

0 dt�0ð�; tÞ still holds. Consequently, we obtain
a vanishing Berry-phase induced heat pumping and, sur-
prisingly as well, also no violation of the FT, no matter how
�LðtÞ and �RðtÞ are modulated.

In summary, through investigating heat transport across
an anharmonic molecular junction by applying cyclic two-
parameter modulations, we find that the system generally
undergoes, apart from dynamic pumping, also a Berry-
phase-induced heat pumping. This geometric contribution
exhibits a robust fractional quantized phonon response.
Furthermore, the quantum FT for heat transport in presence
of a static temperature bias holds true in the anharmonic
case as well. The presence of the geometric phase, how-
ever, violates the heat-flux FT. Only in situations of van-
ishing Berry curvature and restoration of detailed balance
symmetry can the validity of the FT be recovered.

Although our present work did focus on the adiabatic
regime, it likely can be extended to the case of a non-
adiabatic geometric phase [25], and maybe also for non-
cyclic modulation schemes in the spirit of [26]. Because
the geometric phase has profound effects on material prop-
erties [23] we hope that our present findings do invigorate
others to undertake related studies aimed at uncovering
intriguing novel geometric phase induced thermal effects
(such as thermoelectricity) which will enrich further the
discipline of phononics.
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[7] C. Jarzynski and D.K. Wójcik, Phys. Rev. Lett. 92,

230602 (2004); Y. Sughiyama and S. Abe, J. Stat. Mech.
(2008) P05008.

[8] K. Saito and A. Dhar, Phys. Rev. Lett. 99, 180601 (2007).
[9] P. Talkner, M. Campisi, and P. Hänggi, J. Stat. Mech.

(2009) P02025.
[10] D. J. Evans, E. G.D. Cohen, and G. P. Morriss, Phys. Rev.

Lett. 71, 2401 (1993).
[11] G. Gallavotti and E.G. D. Cohen, Phys. Rev. Lett. 74,

2694 (1995).
[12] D. Segal and A. Nitzan, Phys. Rev. E 73, 026109 (2006);

D. Segal, Phys. Rev. Lett. 101, 260601 (2008).
[13] R. Marathe, A.M. Jayannavar, and A. Dhar, Phys. Rev. E

75, 030103(R) (2007).
[14] M. Rey, M. Strass, S. Kohler, P. Hänggi, and F. Sols, Phys.

Rev. B 76, 085337 (2007); L. Arrachea, M. Moskalets, and
L. Martin-Moreno, Phys. Rev. B 75, 245420 (2007).

[15] N. Li, P. Hänggi, and B. Li, Europhys. Lett. 84, 40 009
(2008); N. Li, F. Zhan, P. Hänggi, and B. Li, Phys. Rev. E
80, 011125 (2009); F. Zhan, N. Li, S. Kohler, and P.
Hänggi, Phys. Rev. E 80, 061115 (2009).

[16] J. Ren and B. Li, Phys. Rev. E 81, 021111 (2010).
[17] D. Segal, Phys. Rev. B 73, 205415 (2006).
[18] J. Grunenberg, Angew. Chem., Int. Ed. 40, 4027 (2001).
[19] Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. Seong,

D. G. Cahill, and D.D. Dlott, Science 317, 787 (2007).
[20] I. V. Gopich and A. Szabo, J. Chem. Phys. 124, 154712

(2006).
[21] N. A. Sinitsyn and I. Nemenman, Europhys. Lett. 77,

58001 (2007).
[22] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.104.170601 for the
detailed derivation of the geometric phase contribution

in generating functions and detailed explanations of the
physical picture of the 1=4 fractional quantized phonon
response.

[23] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J.
Zwanziger, The Geometric Phase in Quantum Systems
(Springer-Verlag, New York, 2003).

[24] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[25] J. Ohkubo, J. Stat. Mech. (2008) P02011.
[26] N. A. Sinitsyn, J. Phys. A 42, 193001 (2009).

PRL 104, 170601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

30 APRIL 2010

170601-4

http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1103/PhysRevLett.99.045901
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1103/PhysRevLett.102.095503
http://dx.doi.org/10.1103/PhysRevLett.102.095503
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/PhysRevLett.92.230602
http://dx.doi.org/10.1103/PhysRevLett.92.230602
http://dx.doi.org/10.1088/1742-5468/2008/05/P05008
http://dx.doi.org/10.1088/1742-5468/2008/05/P05008
http://dx.doi.org/10.1103/PhysRevLett.99.180601
http://dx.doi.org/10.1088/1742-5468/2009/02/P02025
http://dx.doi.org/10.1088/1742-5468/2009/02/P02025
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevE.73.026109
http://dx.doi.org/10.1103/PhysRevLett.101.260601
http://dx.doi.org/10.1103/PhysRevE.75.030103
http://dx.doi.org/10.1103/PhysRevE.75.030103
http://dx.doi.org/10.1103/PhysRevB.76.085337
http://dx.doi.org/10.1103/PhysRevB.76.085337
http://dx.doi.org/10.1103/PhysRevB.75.245420
http://dx.doi.org/10.1209/0295-5075/84/40009
http://dx.doi.org/10.1209/0295-5075/84/40009
http://dx.doi.org/10.1103/PhysRevE.80.011125
http://dx.doi.org/10.1103/PhysRevE.80.011125
http://dx.doi.org/10.1103/PhysRevE.80.061115
http://dx.doi.org/10.1103/PhysRevE.81.021111
http://dx.doi.org/10.1103/PhysRevB.73.205415
http://dx.doi.org/10.1002/1521-3773(20011105)40:21<4027::AID-ANIE4027tpmkset 
http://dx.doi.org/10.1063/1.2180770
http://dx.doi.org/10.1063/1.2180770
http://dx.doi.org/10.1209/0295-5075/77/58001
http://dx.doi.org/10.1209/0295-5075/77/58001
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1088/1742-5468/2008/02/P02011
http://dx.doi.org/10.1088/1751-8113/42/19/193001

