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Quantum systems that have never interacted can become nonlocally correlated through a process called

entanglement swapping. To characterize nonlocality in this context, we introduce local models where

quantum systems that are initially uncorrelated are described by uncorrelated local variables. This

additional assumption leads to stronger tests of nonlocality. We show, in particular, that an entangled

pair generated through entanglement swapping will already violate a Bell-type inequality for visibilities as

low as 50% under our assumption.
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It is natural to expect that correlations between distant
particles are the result of causal influences originating in
their common past—this is the idea behind Bell’s concept
of local causality [1]. Yet, quantum theory predicts that
measurements on entangled particles will produce out-
come correlations that cannot be reproduced by any theory
where each separate outcome is locally determined by
variables correlated at the source. This nonlocal nature of
entangled states can be revealed by the violation of Bell
inequalities.

However, remarkable it is that quantum interactions can
establish such nonlocal correlations, it is even more re-
markable that particles that never directly interacted can
also become nonlocally correlated. This is possible
through a process called entanglement swapping [2].
Starting from two independent pairs of entangled particles,
one can measure jointly one particle from each pair, so that
the two other particles become entangled, even though they
have no common past history. The resulting pair is a
genuine entangled pair in every aspect, and can, in particu-
lar, violate Bell inequalities.

Intuitively, it seems that such entanglement swapping
experiments exhibit nonlocal effects even stronger than
those of usual Bell tests. To make this intuition concrete
and to fully grasp the extent of nonlocality in such experi-
ments, it seems appropriate to contrast them with the
predictions of local models where systems that are initially
uncorrelated are described by uncorrelated local variables.
This is the idea that we pursue here. To precise it further,
consider the general scenario depicted below.

A source S1 sends particles to Alice and Bob, and a
separate source S2 sends particles to Charles and Bob.
All parties can perform measurements on their system,
labeled x, y, and z for Alice, Bob, and Charles, and they

obtain outcomes denoted a, b, and c, respectively. Bob’s
measurement y might correspond to a joint measurement
on the two systems that he receives from each source. The
correlations between the measurement outcomes of the
three parties are described by the joint probability distri-
bution Pða; b; cjx; y; zÞ. An entanglement swapping experi-
ment is clearly a particular case of this scenario, where
Bob’s measurement corresponds to a Bell measurement
entangling Alice’s and Charles’s particles.
Under the usual assumption, the tripartite distribution

Pða; b; cjx; y; zÞ would be said to be local if it can be
written in the factorized form

Pða; b; cjx; y; zÞ ¼
Z

d��ð�ÞPðajx; �ÞPðbjy; �ÞPðcjz; �Þ;
(1)

where the variable � with distribution �ð�Þ describes the
joint state of the three systems according to the local
model, and Pðajx; �Þ, Pðbjy; �Þ, Pðcjz; �Þ are the local
probabilities for each separate outcome given �.
In our scenario, however, there are two separate sources

S1 and S2. It is thus natural to assume that the local model
assigns two different states �1 and �2, one to each source,
and to consider instead of (1) the decomposition

Pða; b; cjx; y; zÞ ¼
ZZ

d�1d�2�ð�1; �2ÞPðajx; �1Þ
� Pðbjy; �1; �2ÞPðcjz; �2Þ: (2)

The local response function for Alice now depends only on
�1, the one of Charles only on �2, while the one of Bob
depends on both �1 and �2. So far, the decompositions (1)
and (2) are equivalent because �ð�1; �2Þ could be different
from zero only when �1 ¼ �2 ¼ � to recover (1). We now
introduce our basic assumption: since the two sources S1
and S2 are supposed to be independent and uncorrelated, it
is natural to assume that this property carries over to the
local model. The variables �1 and �2 should therefore be
independent and their joint distribution �ð�1; �2Þ factorize:

�ð�1; �2Þ ¼ �1ð�1Þ�2ð�2Þ: (3)
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We refer to models satisfying this independence assump-
tion as ‘‘bilocal’’ models, since they aim at explaining the
correlations Pða; b; cjx; y; zÞ with two independent sources
of local variables.

Even though the local variables �1 and �2 are initially
independent, once conditioned on the joint measurement
result of Bob they will bear enough correlations to repro-
duce nontrivial correlations between the systems of Alice
and Charles. These correlations, however, are weaker than
those that can be established through joint measurements
in quantum theory. We introduce below a (quadratic) Bell
inequality that is satisfied by all bilocal correlations, but
which is violated by quantum correlations.

Restricted classes of local models with independent
sources were considered in [3,4] within the context of the
detection loophole. But apart from these exploratory
works, little was known about how nonlocality is induced
through measurements on independent quantum systems.
Beyond its fundamental interest, nonlocality is also known
to play a key role in several quantum information protocols
[5,6], and measurement-induced correlations are at the
basis of quantum repeaters [7] and measurement-based
quantum computation [8]. One of our contribution is to
introduce a theoretical framework to address broadly the
role of nonlocality in such contexts.

Before entering in the details of our results, it might be
worth justifying further our independence assumption. It is
strictly speaking an assumption, rather than something
which follows logically from locality. Indeed, some events
in the common past of the sources S1 and S2 could in
principle have influenced, in a way that is perfectly in
accord with locality, both �1 and �2 such that they wind
up correlated, in violation of (3). However, an assumption
similar to (3) is actually hidden in any standard Bell-type
experiment. In order to derive a Bell-type inequality, one
needs (in addition to local causality) an assumption having
to do with the measurement settings being ‘‘freely
chosen.’’ What this means in practice is that the measure-
ment settings are determined by a random mechanism that
is considered independent of the variable � describing the
particle source [1,9]. Seen from this perspective, the as-
sumption that the laser sources in the quantum random
number generators used to choose the measurement set-
tings in a standard Bell experiment [10] are independent of
the laser source generating the entangled photons is not
much different from the assumption that the two laser
sources (which may be of different brands, assembled in
different parts of the world, and powered by different
electrical supplies) used in an entanglement swapping
experiment are independent. Of course we cannot exclude
in principle that such apparently independent sources are
significantly correlated. But, quoting Bell, ‘‘this way of
arranging quantum mechanical correlations would be even
more mind-boggling than one in which causal chains go
faster than light. Apparently separate parts of the world
would be deeply and conspiratorially entangled’’ [1].

Characterization of the bilocal set.—We start by giving
a characterization of the set of bilocal correlations which is
more convenient than definitions (2) and (3). First note that
without loss of generality the local response function
Pðajx; �1Þ of Alice can be taken to be deterministic, i.e.,
such that it assigns a unique measurement output a to every
input x (any randomness used locally by Alice can always
be thought of as being included in the shared variable �1).
In the case of a finite number of possible measurement
inputs and outputs, there is a finite number of such deter-
ministic strategies corresponding to an assignment of an
output �x to each of Alice’s N possible inputs x. We thus
label each of these strategies with the string �� ¼ �1 . . .�N

and denote the corresponding response function P ��ðajxÞ,
or P �� for short. Similarly, the response functions
Pðbjy; �1; �2Þ and Pðcjz; �2Þ can also be taken determinis-
tic. We label the associated strategies �� and �� and the
corresponding response functions P ��ðbjyÞ and P ��ðcjzÞ.
Let �12

�� �� ��
denote the set of pairs (�1, �2) specifying the

strategies ��, ��, and �� for Alice, Bob, and Charles. De-
fining q �� �� �� ¼

RR
�12

�� �� ��

d�1d�2�ð�1;�2Þ, Eq. (2) can then be
rewritten as

Pða; b; cjx; y; zÞ ¼ X
��; ��; ��

q �� �� ��P ��ðajxÞP ��ðbjyÞP ��ðcjzÞ;

(4)

with q �� �� �� � 0 and
P

�� �� ��q �� �� �� ¼ 1. So far we have not

used the independence condition (3) and (4) corresponds to
the well-known decomposition of local correlations as a
convex sum of deterministic strategies, where the weights
q �� �� �� can be understood as the probabilities assigned by

the source to the strategies ��, �� and ��.
Let us now define q �� �� ¼ P

��q �� �� ��, q �� ¼ P
�� ��q �� �� ��,

and q �� ¼ P
�� ��q �� �� ��. Using the fact that �12

�� �� ��
¼ ð�1

�� �
�2

��Þ \�12
��
, as follows from (2), the independence condi-

tion (3) implies that

q �� �� ¼ q ��q ��: (5)

Conversely, any correlation Pða; b; cjx; y; zÞ satisfying (4)
and (5) can be written in the form (2) [11]. We thus
conclude that a tripartite correlation is bilocal if and only
if it admits the decomposition (4) with the restriction (5).
The bilocal set is clearly contained in the local set. The

extremal points of the local set, corresponding to determi-
nistic strategies, are also bilocal, but a mixture of determi-
nistic strategies is not necessarily bilocal due to the
nonconvex constraint (5). Therefore, one cannot use stan-
dard Bell inequalities to distinguish one set from the other.
As we will see below, however, correlations can be shown
to be nonbilocal using nonlinear inequalities (or joint sets
of linear inequalities).
Application to entanglement swapping.—We now illus-

trate how the bilocality constraint restricts the set of pos-
sible correlations on a simple example. The sources S1 and
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S2 send pairs of particles in the singlet state j��i ¼
ðj01i � j10iÞ= ffiffiffi

2
p

. Bob performs a Bell state measurement
on the two particles he receives, with four possible outputs
b ¼ b0b1 ¼ 00, 01, 10, 11 corresponding to the four Bell
states j�þi, j�þi, j��i, and j��i, respectively.
Depending on Bob’s result, Alice and Charles’s particles
end up in the corresponding Bell state. To check whether
the entanglement swapping succeeded, we assume that
Alice and Charles can perform one out of two measure-
ment x, z 2 f0; 1gwith binary outputs a, c 2 f0; 1g on their
system. This is sufficient, e.g., to test the CHSH inequality
[13] (or more precisely, for each state prepared by Bob, a
different version of the CHSH inequality corresponding to
a relabeling of the inputs and outputs). This scenario is
characterized by the probabilities PQðabcjxzÞ ¼
PQðbÞPQjbðacjxzÞ, where PQjbðacjxzÞ denote the correla-

tions seen by Alice and Charles conditioned on Bob’s
output b, and where for convenience we omitted Bob’s
input y since he is assumed to make a single, fixed mea-
surement. Here and below, probabilities indexed by Q
correspond to the quantum predictions for this entangle-
ment swapping experiment.

We are interested in the robustness of PQ to the admix-

ture of white noise, quantified by the maximal v 2 ½0; 1�
such that PQðvÞ ¼ vPQ þ ð1� vÞPR is bilocal, where PR

denotes the distribution with completely random out-
comes. The quantity v can also be interpreted as the
experimental visibility of the final entangled pair.

If Alice and Charles use the measurement settings opti-
mal for the CHSH inequality, given by x0 ¼ �x, x1 ¼ �z,

z0 ¼ ð�x þ �zÞ=
ffiffiffi
2

p
, and z1 ¼ ð�x � �zÞ=

ffiffiffi
2

p
, no im-

provement is obtained over the usual locality condition,
i.e., the quantum correlations become bilocal for a visibil-

ity v ¼ 1=
ffiffiffi
2

p
, the same point at which they also become

local. Using the characterization defined by (4) and (5), we
looked numerically for other choices of measurement set-
tings for Alice and Charles and the best noise resistance

that we found is v ¼ 1=2 and is obtained for x0 ¼ z0 ¼
ð�x þ �zÞ=

ffiffiffi
2

p
, x1 ¼ z1 ¼ ð�x � �zÞ=

ffiffiffi
2

p
. The corre-

sponding correlations observed by the three parties are
given by PQðbÞ ¼ 1=4 for all b, and

PQjbðacjxzÞ ¼
8><
>:
1=2 if a � c ¼ b0 and x � z ¼ b1
0 if a � c � b0 and x � z ¼ b1
1=4 otherwise

:

(6)

For instance, if Alice and Charles end up in the j�þi
state, corresponding to b ¼ 00, they obtain perfectly cor-
related results if they performed the same measure-
ments, and completely uncorrelated results otherwise.
The above correlations are local as they can be de-
composed as in (4), in the form PQ ¼ ðPC þ �PCÞ=2,
where PC ¼ 1

8

P
��0�1

P��P�0�1
Pð���0Þð���0Þ and �PC ¼

1
8

P
��0�1

Pð���1Þð���1�1ÞP�0�1
Pð���0Þð���0�1Þ. They are

not bilocal, however, as we now show.

A quadratic Bell inequality for bilocality.—Let us first
define, for a given probability distribution PðabcjxzÞ ¼
PðbÞPbðacjxzÞ, the following correlation term between
Alice and Charles’ outputs, conditioned on Bob’s output:

EbðxzÞ ¼
X

a�c¼b0

PbðacjxzÞ �
X

a�c�b0

PbðacjxzÞ: (7)

Inspired by the properties (6) of PQ, we introduce the

following combination that quantifies the high degree of
correlations expected between Alice’s and Charles’s out-
comes when x � z ¼ b1:

I ¼ X
b

PðbÞ X
x�z¼b1

EbðxzÞ: (8)

We quantify the deviation from the expected uncorrelated
results when x � z � b1 through

E ¼ max
b

max
x�z�b1

4PðbÞjEbðxzÞj: (9)

For PQ, one gets I ¼ 2 and E ¼ 0. Note that there exist

bilocal correlations which also reach the value I ¼ 2, for
instance, the deterministic point defined by �� ¼ 00, �� ¼
00, �� ¼ 00, or the correlations PC introduced above. For
these correlations, E ¼ 4 and E ¼ 1, respectively. The
linear expression I cannot therefore be used as a standard
Bell inequality to test bilocality. However, as we prove
below, the following quadratic inequality

I � 1þ E2 (10)

is satisfied by all bilocal correlations.
The noisy point PQðvÞ yields IðvÞ ¼ 2v and EðvÞ ¼ 0

and thus violates (10) whenever v > 1=2 (see Fig. 1). On
the other hand, PQðvÞ is bilocal when v � 1=2 [14]. Our

inequality thus detects optimally the resistance to noise of
the point PQ.

Proof of (10).—Let P be a bilocal probability distribu-
tion with decomposition (4), where �� ¼ �0�1, �� ¼ �0�1,
�� ¼ �0�1. Let us define the following weights (where
�̂0 ¼ �0 � 1 and similarly for the other indices):

q0�0�1;�0�1;�0�1
¼ ðq�0�1;�0�1;�0�1

þ q�0�1;�̂0�1;�̂0�̂1

þ q�̂0�̂1;�̂0�1;�0�1
þ q�̂0�̂1;�0�1;�̂0�̂1

Þ=4;
q00�0�1;�0�1;�0�1

¼ ðq0�0�1;�0�1;�0�1
þ q0

�0�1;�0�̂1;�1�0

þ q0
�1�0;�0�̂1;�0�1

þ q0�1�0;�0�1;�1�0
Þ=4:

The ‘‘depolarized’’ correlation P00 ¼ P
�� �� ��q

00
�� �� ��

P ��P ��P ��

is then also bilocal, i.e., q00�� �� ¼ q00��q00��. Moreover, P00 is such
that I00 ¼ I and E00 � E. Because of the symmetries im-
posed through the above equations, the weights q00

�� �� ��

depend on only 4 parameters, which we choose to be r ¼
q00�0¼�1

, s ¼ q00�0¼�1
, t ¼ q00

�0¼0j�0�1¼00;�0�1¼00
and u ¼

q00
�0¼�1j�0�1¼01;�0�1¼01

(with obvious notations, the weights

q00
�� �� ��

being understood as probabilities [11]). Defining

X ¼ rsð2t� 1Þ and Y ¼ ð1� rÞð1� sÞð2u� 1Þ, we find
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I00 ¼ 2ðX þ YÞ, E00 ¼ jX � Yj. From their definition, X

and Y are restricted to satisfy
ffiffiffiffiffiffiffijXjp þ ffiffiffiffiffiffiffijYjp � ffiffiffiffiffi

rs
p þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� rÞð1� sÞp � 1. One can easily check that under

this constraint, I00 � 1þ E002, which implies (10). j
Discussion and open questions.—We have shown that if

one makes the reasonable assumption, underlying all of
modern empirical science, that the world is composed of
different parts that are independent for the purposes at
hand, then nonlocality is a phenomena even more common
than usually thought. While the standard analysis leads to
the conclusion that the final singlet pair in an entanglement

swapping experiment needs a visibility higher than v ¼
1=

ffiffiffi
2

p ’ 71% to violate the CHSH inequality and will not
violate any Bell inequality (with von Neumann measure-
ments) for visibilities smaller than v ’ 66% [15], we have
shown here that under our assumption it already exhibits
nonbilocal correlations for visibilities as low as 50%. This
simplifies the requirements for the demonstration of quan-
tumness in entanglement swapping experiments [16].

Is this v ¼ 50% limit a fundamental limit? It is easy to
show that there exists a bilocal model for visibilities lower
than 25% [12]; but what happens in-between? Could we
lower the visibility threshold by considering experiments
with more inputs? Do we gain anything by letting Bob
choose between two or more measurements, e.g., be-
tween two Bell state measurements in different bases?
Can bilocality be violated for visibilities lower than 33%,
corresponding to a final noisy singlet pair that is sepa-
rable? This last question is not completely trivial at first
sight: a setting where the source S1 produces a singlet state,

S2 the separable state � ¼ ðjþz;þzihþz;þzj þ
jþx;�zihþx;�zjÞ=2, where Bob performs a standard

Bell measurement, Alice measures in the ð�x � �zÞ=
ffiffiffi
2

p
bases and Charles always measures in the z basis, generates
correlations that are nonbilocal [17]. This shows that a Bell
measurement can correlate independent systems in ways
that are even more astonishing that one would ‘‘quantum
naively’’ think. From this perspective, it would be interest-
ing to characterize the class of states (including separable
states) that are nonbilocal when correlated through Bell
measurements.
The present work also raises many other questions. In

particular, the condition (3) can be straightforwardly ex-
tended to models with n independent sources. How do such
n-local models differ from bilocal ones? How does their
tolerance to noise scale with n? Finally, it would be inter-
esting to explore the implications of our approach and
findings in the context of quantum information proto-
cols based on nonlocality, and, in particular, protocols
that use measurements on independent systems, such as
quantum repeaters and measurement-based computation.
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FIG. 1 (color online). Two-dimensional slice of the correlation
space, which contains the points PQ, PC, �PC, and PR defined in

the text. The square delimits the quantum correlations achievable
with entanglement swapping, which coincides with the local
polytope in this slice. These correlations cannot be all repro-
duced locally with two independent sources. The four portions of
parabola delimit the bilocal set [the upper parabola is obtained
from (10). Similar quadratic Bell-type inequalities can be de-
rived to obtain the other three parabolas]. The quantum point PQ

enters the bilocal region for a visibility v � 1=2.
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