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We show that the motion of individual red blood cells in an oscillating moderate shear flow is described

by a nonlinear system of three coupled oscillators. Our experiments reveal that the cell tank treads and

tumbles either in a stable way with synchronized cell inclination, membrane rotation and hydrodynamic

oscillations, or in an irregular way, very sensitively to initial conditions. By adapting our model described

previously, we determine the theoretical diagram for the red cell motion in a sinusoidal flow close to

physiological shear stresses and flow variation frequencies and reveal large domains of chaotic motions.

Finally, fitting our observations allows a characterization of cell viscosity and membrane elasticity.
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Oscillators are ubiquitous in physics, chemistry
(Belousov-Zhabotinski reaction) and in the living world
at the scale of single organisms (pairs of beating eukaryotic
flagella [1]) or of populations (fireflies blinking). Ever
since Huygens noticed in 1665 that two pendulum clocks
synchronized, scientists discovered that coupled oscillators
showed a range of complex behaviors from synchronous to
chaotic oscillations. Recently, we demonstrated that the
movement of a red blood cell (RBC) in a steady shear flow
is well described by two ordinary equations analog to the
problem of two dissipative coupled angular oscillators
represented by the cell inclination angle relatively to the
flow direction and the rotation angle of the membrane
elements around the center of mass of the cell [2]. The
two angles are synchronized, as required for 2D nonlinear
systems [2–4]. In the vasculature, however, the blood flow
is time-dependent. In arteries it is pulsed and in the micro-
circulation, it presents irregular temporal variations, from
intermittent cessation in capillary flows to chaotic behavior
in arterioles [5–7]. These fluctuations, which are partly
related to fluctuations of vascular calibre are still poorly
understood. At the RBC scale, the time-dependent external
flow plays the role of a third coupled oscillator, which, by
adding a degree of freedom to the nonlinear system could
allow the cell to have a complex, even chaotic motion.
Such motion would in turn influence the large scale flow of
blood and contribute to its observed temporal fluctuations.
In this work, we provide a theoretical description of the
motion of RBCs in a sinusoidal moderate shear flow close
to physiological shear stresses and flow variation frequen-
cies that we illustrate with several experiments. We predict
that RBCs can present a chaotic motion and we experi-
mentally show the unstable movement of RBCs. We pro-
pose a full theoretical diagram of the RBC motion as a
function of the amplitude and the frequency of the shear
rate. We show that the existence of a cell shape memory

associated with a minimum of the elastic energy of the
membrane for a specific position of its elements is crucial
for chaos. Finally, as our experiments allow an easy record-
ing of RBC motion they may provide a suitable tool to
characterize cell viscosity and elasticity.
Model.—The motion under a moderate shear flow of a

RBC whose symmetry axis lies in the shear plane is
characterized by two angles: �, the cell inclination angle
with respect to the flow direction and!, the angle between
the instantaneous position of a membrane element and its
initial position at rest (Fig. 1). At low shear stress, RBCs
tumble (T), i.e., � rotates and ! oscillates. Above critical
values of the external viscosity and the shear stress, the cell
inclination stabilizes (� oscillates around a mean value)
while the membrane rotates around the fixed cell shape (!

FIG. 1 (color online). (a)–(c) numerical simulation of �ð�Þ vs
!ð�Þ. (a) limit cycle _�a ¼ 2 s�1, � ¼ 0:2 rad � s�1. (b) two limit
cycles _�a ¼ 9 s�1, � ¼ 0:35 rad � s�1; Initial conditions: !0 ¼
0, �0 ¼ 0 (solid line) or �0 ¼ �=2 (dashed line). (c) Nonclosed
trajectory for _�a ¼ 9 s�1, � ¼ 0:8 rad � s�1, initial conditions:
!0 ¼ 0, �0 ¼ 10�9 (solid line) or �0 ¼ �10�9 (dashed line).
(d) sketch of a RBC in the flow. (e) numerical chaotic trajectories
�ð�Þ vs time, initial conditions of (c).
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rotates): the cell both tank tread (TT) and swing (S). The
membrane elements, displaced during the tank treading
revolution are deformed and store an elastic energy which
reaches a maximum for every � rotation of the membrane.
This energy barrier modifies periodically the energy bal-
ance of the system and is at the origin the � oscillations
(Fig. 1). At the T-STT transition, there is an intermittent
regime with alternative series of T and STT [2,8,9], where
the numbers of T and STT depend on the shear rate. A
recent analytical simple model derived from Keller and
Skalak’s (KS) [10] was proposed [2,9], which treats a RBC
as a viscoelastic ellipsoidal membrane enclosing a viscous
fluid. It does not account for cell deformation and is there-
fore adapted to moderate shear stress. It deals with a basic
mechanical description of the membrane and a simplified
velocity field on the membrane, which lead to tractable
analytical equations that retrieved the observed regimes of
cell motion and provided semiquantitative fits of experi-
mental data [2]. Subsequent full numerical models [11–13]
derived from this approach basically retrieved the same
features for the cell motion. The RBC shape is described by
a fixed oblate ellipsoid filled with a Newtonian solution of
viscosity �i and delimited by a viscoelastic thin mem-
brane, which obeys a simple Kelvin-Voigt constitutive
law: � ¼ 2�mDþ 2�mE, where �m and �m are the
membrane viscosity and shear modulus and D and E are
the strain rate and strain tensors, respectively. The sinusoi-
dal shear rate of the flow is _� ¼ _�a sinð�tÞ. The balance of
torques exerted by the external fluid on the cell and the
conservation of energy [10]—the rate of viscous dissipa-
tion in the cell plus the elastic power stored by the cytos-
keleton is equal to the power provided by the external fluid
on the cell—yield the two equations for RBC motion given
in Ref. [2]. These equations still hold for time-dependent
shear rate. Adding a third equation with ~� ¼ �t yields a 3D

autonomous flow Fð ~XÞ such as d ~X=dt ¼ Fð ~XÞ, where ~X is
the vector (�, !, ~�):
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f1, f2, and f3 are geometrical constants described in
Ref. [10], a1 and a2 are the lengths of the long and small
axis of the cell cross section, V is the RBC volume,� is the
membrane volume, and �0 is the external suspending fluid
viscosity. The phase space is conveniently described by the
ensemble (�, !, sinð~�Þ). Equations are solved numerically
by using the set of parameters [2]: a1 ¼ a3 ¼ 4 �m, a2 ¼
1:5 �m, �

V ¼ 7:48� 10�2, �0 ¼ 34� 10�3 Pa � s, �i ¼
10�2 Pa � s, �m ¼ 0:7 Pa � s, �m ¼ 1:6 Pa.

For small shear rate ( _�a < _�c), where _�c is the critical
shear rate of the steady T-STT transition, RBCs tumbles
periodically. The phase trajectories approach a stable
limit cycle as shown in Fig. 1(a) on the projection on the
plane (�, !). The approach to the limit cycle takes about
1 sec. The angle � changes monotonically with time:
clockwise during the forward movement ( _� > 0) and coun-
terclockwise back to its initial value during the backward
movement ( _� < 0). The angle ! oscillates, indicating that
the membrane slightly moves back and forth about its
position at rest.
For larger values of the shear rate amplitude ( _�a > _�c),

the cells swing and tank tread when the instantaneous shear
rate is larger than _�c and tumble when it decreases below
_�c just before the flow changes direction, as shown on an
experimental sequence in Fig. 2. The model predicts a
stable periodic regime described by either one or two
nonintersecting limit cycles [see Fig. 1(b)], whose trajec-
tories are determined by the initial angles. During the S-TT
regime, � is somewhat sensitive to the initial conditions.
However, the storage of elastic energy slightly differs on
each trajectory. Therefore, the TT-T transition does not
occur at the same moment and the values of � and ! when
the flow changes direction differ from one trajectory to the
other. The consequence for the cell reversal is major: in one
case, at the end of the forward movement the cell has a
counterclockwise reversal and passes vertically (see
Fig. 2), perpendicularly to the flow direction, whereas in
the other case, the cell rotates in the clockwise direction
and passes horizontally, in the alignment of the flow
direction.
For specific values of _�a and �, a nonperiodic motion,

highly sensitive to initial conditions and characterized by
an unstable limit cycle occurs. Projections of portions of
trajectories are shown in Fig. 1(c). Trajectories are no
longer closed and two initially very close initial conditions
lead to strongly divergent trajectories. For illustrations of
the attractor and first return map see [14]. In this case, the
three oscillators �, ! and _� cannot synchronize and the
movement is chaotic. Chaos was further investigated by
computing the Lyapunov exponents of the system, which
characterize the rate of separation of initially close trajec-

tories. Let ~XðtÞ be a solution of the flow F and � ~Xð0Þ an
initial infinitesimal separation. The separation at time t,

� ~XðtÞ, obeys the equation of evolution obtained by linear-

FIG. 2. Sequence of a RBC round trip during one period of the
flow. Forward motion 1–8, snapshot times (in s): 0, 0.32, 0.64,
1.08, 2.12, 3.28, 3.72, 4.16; backward motion 9–16, snapshot
times: 4.56, 4.88, 5.16, 5.76, 7.08, 7.98, 8.24, and 8.8.
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ization of the flow F, and its integration leads to the

exponential evolution of the perturbation � ~XðtÞ:
d� ~X

dt
¼ @F

@ ~X

�������� ~XðtÞ
� ~X; � ~XðtÞ ¼ � ~Xð0Þe

R
t

0
ð@F=@ ~XÞj ~XðtÞdt:

(2)

For each given solution, we computed the Jacobian matrix

@F=@ ~X, we numerically determined the matrixR
t
0
@F
@ ~X

j ~XðtÞdt, and we calculated its three eigenvalues at

several times. The slopes of the asymptotic linear varia-
tions of these values with time are the three Lyapunov
exponents of the system. The one corresponding to the
parameter ~� is equal to 0 and the second one is always
negative. The largest exponent 	 may be positive (see
[14]), which is a signature of chaotic motion. Variations
of 	 and of the error on 	 (determined from the correlation
coefficient of the least square fit, 1� r2) with the shear rate
frequency are shown in the inset of Fig. 3. The error is
small for the largest positive values of 	, thus confirming
the existence of chaotic zones of the RBC motion. We
analyzed the Floquet matrix for the Poincaré section com-
puted when the instantaneous shear rate equals 0 at the
bifurcation event. The Floquet eigenvalue crosses the unit
circle along the real axis at þ1, wich characterizes a
saddle-node bifurcation and discloses that the switch to
chaotic behavior occurs via an intermittency (type I)
mechanism, characterized by bursts of chaos. We fully
characterized the RBC dynamical behavior by plotting 	
as a function of � and the RMS value of the shear rate

_�rms ¼ _�a=
ffiffiffi
2

p
(Fig. 3). Values for � span physiological

frequencies, from vasomotion fluctuations (tenths of
Hertz) to the heart frequency (one Hertz) and values of _�
cover the range of stresses �0 _� observed in the vaculature,
from capillaries to arteries [5–7]. When _�rms decreases
below 3.1, 	 deeply falls around �0:5, revealing that the
system is stable. The value 3.1 is equal to _�c, the critical
shear rate of the T-TT transition in constant shear flow for

the RBC we computed. Tumbling stabilizes the motion.
Indeed, during tumbling, the cell membrane is ‘‘quasisoli-
dified’’, the angle ! remains very small and it can be
eliminated in the first equation of Eq. (1) by using the
second equation where the term in sinð2!Þ is neglected.
The system then loses one dimension and chaos is no
longer possible. Above _�c the motion is much less stable.
Unstable chaotic zones appear. They form widening bands
located on a bundle of lines. The solid line represents the
( _�rms, �) couples for which a RBC performs a full swinging
cycle during the tank treading time of the forward motion
( _� > 0) and one swinging cycle during the backward mo-
tion ( _� < 0). The other dotted lines characterize the flow
conditions for which a RBC swings, respectively, 1=2
(steepest line), 2, 3, and 4 times during half a flow period.
The strong correlation between these lines and the chaotic
bands shows that chaos appears at the resonance of the flow
frequency with the internal specific cell frequency. As
expected, chaos is intimately related to swinging, i.e., to
the elastic storage of the nonspherical membrane, since the
term with the elastic modulus �m of Eq. (1) induces the
coupling of the three differential equations. Viscous cap-
sules or spherical viscoelastic capsules must present a
stable dynamics in a time-dependent shear flow.
Observations.—Direct measurements of � are provided

from side-view microscopic imaging in a vertical plane
parallel to the shear plane [2,15]. Sinusoidal flow was
created from the variation of hydrostatic pressure by con-
necting the flow chamber to a reservoir (10 ml) bound to
the outer edge of a vertical rotating wheel (radius 9.45 cm).
The frequency of rotation of the wheel � (in rad=s) was
varied in the range 0:16–1:15 rad=s and _�a ¼ 6:72 s�1.
RBCs were diluted in a solution of dextran (concentration
9% w=w, �0 ¼ 34 mPa � s, Mw ¼ 2� 106 g=Mol) with
PBS at 290 mOsm and pH ¼ 7:4. RBCs were almost
nonbuoyant in the solution and could flow during several
hours without sinking. The membrane shear modulus as
well as the internal and membrane viscosities of RBCs

FIG. 3 (color online). Diagram of the dynamical RBC motion; (a) 3D map of 	 vs � and _�rms; (b) 2D projection: values of 	 (in
color) in the (�, _�rms) plane. Dark regions (positive 	) are chaotic zones. Solid line: flow conditions for which RBCs perform a full
swinging cycle during the forward (or backward) motion. Dotted lines from top to bottom: RBCs perform respectively 1=2, 2, 3 and 4
swinging cycles during the forward motion; inset: variation of 	 and 1� r2 with � in a chaotic zone.
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depend on the age of the cell and are therefore widely
distributed when measured in a blood sample. The maxi-
mal applied shear stress �0 _�a was specifically chosen to be
larger than the critical shear stress �0 _�c for the majority of
RBCs, so that most cells swing and tank tread but the
stiffest ones tumble. We recorded cell movements 10 min
after application of the flow in order to let the motion
stabilize and reach the limit cycle.

We observed the three motions predicted by the model.
Stable tumbling is characterized by the continuous varia-
tion of � with time as illustrated in Fig. 4(a) over three flow
periods. For _�a > _�c, the stable regime is shown on two
cells, in Fig. 4(b) and in Fig. 2, which displays snapshots of
a typical sequence, where one can notice that the cell shape
does not significantly change during the motion. The cell
swings and tank treads at high shear rate and tumbles when
the shear rate decreases below _�c, when the flow changes
direction. The modulation of the shear rate allows the RBC
to exhibit alternatively a solid-state and a viscoelastic
capsulelike dynamical behavior during the time flow. An
unstable nonperiodic regimewas also observed as shown in
Fig. 4(c) and in Fig. 5 over more than 50 periods. As we
predicted theoretically: the way the cell rotates to change
direction varies with time. The cell nonperiodically alter-
nates sequences of horizontal reversals (� ¼ 0) and verti-
cal reversals (� ¼ �=2). The consequence is that the
number of clockwise and anticlockwise rotations are dif-
ferent as illustrated in Fig. 5 where the cell finally presents
a net clockwise tumbling motion although the mean flow is
equal to zero.

Finally, our model and our experiments are in good
semiquantitative agreement: experimental curves �ðtÞ are
well-fitted by our model by adjusting the two parameters,

�m and �eff ¼ �i þ �m
�
V as shown in Fig. 4 and in [14]

for a single cell observed at 6 different flow frequencies. In
the case of unstable behavior, an adjustment is stricto sensu
not possible since the motion is highly sensitive to initial

conditions but the theoretical curve well describes the main
characteristics of the motion (see inserts of Fig. 4) and
predicts the instability of motion.
Here, we predict that dilute RBCs present a chaotic

motion over large domains of external sinusoidal flows,
under shear stresses and flow variation frequencies relevant
for arterial and microcirculation physiology. In vivo, in the
whole blood cells form a concentrated suspension and
interact together. These interactions couple more oscilla-
tors together and should result in enhanced chaotic motions
which could affect flow properties in the sheared blood
layer close to vessel walls. Finally, our approach also
applies to other physical systems used in flow as polymer
capsules or protein-coated drops.
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FIG. 4 (color online). Experimental variation and fits of � vs
time for 3 RBCs. (a) � ¼ 0:08 rad � s�1, stable T, fit �eff ¼
1:25� 10�2 Pa � s, � ¼ 15:2 Pa; (b) � ¼ 0:05 rad � s�1, stable
S-TT and T, fit �eff ¼ 4:95� 10�2 Pa � s, � ¼ 0:591 Pa;
(c) � ¼ 0:11 rad � s�1. Unstable chaotic motion, fit �eff ¼
3:97� 10�2 Pa � s, � ¼ 0:49 Pa. Insets show a zoom of the
boxed regions.

FIG. 5 (color online). Long experiment: variations of the ab-
solute value � vs time. Bottom: the black lines denote vertical
reversals.
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