
Impurity-Induced Bound States and Proximity Effect in a Bilayer Exciton Condensate

Yonatan Dubi1 and Alexander V. Balatsky1,2

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 16 December 2009; published 21 April 2010)

The effect of impurities which induce local interlayer tunneling in bilayer exciton condensates is

discussed. We show that a localized single-fermion bound state emerges inside the gap for any strength of

impurity scattering and calculate the dependence of the impurity state energy and wave function on the

potential strength. We show that such an impurity-induced single-fermion state enhances the interlayer

coherence around it, and is similar to the superconducting proximity effect. As a direct consequence of

these single-impurity states, we predict that a finite concentration of such impurities will increase the

critical temperature for exciton condensation.
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Introduction.—The Bose condensation of electron-hole
pairs (excitons) in semiconductors is an old idea [1,2]
which has received renewed attention, mostly due to the
possible experimental realization of such a condensate in
semiconductor bilayers [3,4]. In these systems, two quan-
tum wells are separated by an insulating barrier, which
prevents fast recombination of the excitons and allows for a
coherent exciton condensate (EC) to develop. The lack of
direct tunneling between the layers is thus a crucial com-
ponent in the existence of an EC. The role of interlayer
tunneling was studied some time ago [5,6], and it was
shown that interlayer tunneling is not necessarily detrimen-
tal to the EC, although it may induce finite dissipation in
the current flow, which may explain the failure to observe
pure dissipationless current flow in these systems.

The key issue in the experimental verification of an EC
is the identification of a clear signature that provides a
convincing proof of EC. Indirect evidence for exciton
condensation has been provided by tunneling experiments
[7,8], vanishing Hall resistance [9], photoluminescence
[10,11], and pattern formation [12] in photoexcited indirect
excitons to name a few. Yet, in the absence of direct
evidence of dissipationless supercurrent, it is important to
devise other methods in which the properties of the EC
may be probed.

In this Letter we suggest that the presence of an EC may
be determined by studying its response to local impuri-
ties. This notion of studying impurities to determine the
structure of an underlying condensate structure was sug-
gested in the context of d-wave superconductors [13–15],
and was expanded to various systems such as bilayer
cuprate superconductors [16], inhomogeneous cuprates
[17], iron-based superconductors [18], exotic superconduc-
tors [19], and various graphene systems [20–22]. While in
these cases the impurities are either scattering or magnetic
impurities, as we will show below the bilayer exciton
system will support impurities of another kind, somewhat
analogous to negative-U impurities in superconductors
[23–25].

Consider a bilayer system, composed of two quantum
wells placed one on top of another (with an insulating layer
in between, typically �10 nm thick [3]), in which at a
certain point defect in space the two layers become close
enough to allow greater direct interlayer tunneling. Since
the tunneling amplitude depends exponentially on the in-
terlayer distance, a small local variation in the thickness of
the separating layer may result in a large increase of the
local tunneling. We call this point the tunneling impurity
[Fig. 1(a)].
Clearly, if there are too many such tunneling impurities,

the excitons will recombine before the EC is achieved.
Here we wish to study the case of either a single tunneling
impurity or a finite (yet small) concentration of such
impurities. Our main results are as follows.
(i) For a single tunneling impurity, we find that a subgap

bound state is formed, at an energy !0 þ � ¼
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þ=ð1þ �Þp
[Fig. 1(b)], where � and

� define the band structure and � defines the impurity
strength [see Eqs. (8) and (9)]. The spatial extent of the
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FIG. 1. (a) Real-space schematic representation of the local
tunneling impurity. Far from the impurity electron-hole pairs
form the exciton condensate, but at the tunneling impurity
localized bound states are formed. (b) Energy-space representa-
tion of our results, showing the energy position of the impurity-
induced bound states. New spectroscopic features will emerge as
a result of these bound states, depending on their occupation. A
few photoluminescence processes due to the bound states are
illustrated.
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bound state is given by a length scale ��
ffiffiffiffiffiffiffi
�

1þ�

q
. This result

is nonperturbative, and applies to any tunneling strength.
(ii) In the vicinity of the tunneling impurity, the inter-

layer coherence is enhanced.
(iii) Following the point above, a finite concentration of

tunneling impurities should result in an increase of the EC
critical temperature.

We suggest to test our predictions by deliberately in-
troducing such impurities into the bilayer systems (for
instance, by ion bombardment). Our results should apply
to both EC formed in quantum Hall bilayer and in photo-
excited exciton systems. There is evidence in optical mea-
surements of bilayer systems that such impurities are
formed in the growth process [4].

Single-impurity bound state.—The starting point for this
calculation is the usual mean-field description of the bi-
layer system [2,26,27]

HMF ¼X
�k

"k�c
y
k�ck� þX

k

ð�kc
y
kþck� þ H:c:Þ; (1)

where þ (�) refers to the upper (lower) layer, and "kþ ¼
@
2

2mþ
k2, "k� ¼ � @

2

2m� k2 � Eg (the chemical potentials can

be absorbed into Eg). The order parameter �k should in

principle be determined self-consistently, but for the sake
of allowing for an analytic calculation, we will assume its
value is known. Moreover, we will assume that it takes a
similar form to that of the superconducting gap; i.e., it is
finite (and uniform) within some range from the Fermi
energy. This is not a bad approximation when the EC is
of a BCS-like nature [26]. The real spin of the electrons has
been disregarded, as it plays no significant role in the
situation we describe here.

The Hamiltonian of Eq. (1) is similar to the BCS
Hamiltonian, and it is thus useful to follow the formulation
used to study single-impurity states in superconductors
[14]. We define Nambu-like operators,

c k ¼ ckþ
ck�

� �
;

for which the Green function may be written as a 2� 2
matrix

Ĝ kðtÞ ¼ hc y
k ðtÞc kð0Þi ¼ Gk;þ Fk

Fy
k Gk;�

 !
: (2)

In the absence of impurities, the electron (þ), hole (�),
and anomalous Green’s functions (in energy domain) are
given by

gþ¼ !�Ek�"k
ð!�EkÞ2�"2k��2

; g�¼ !�Ekþ"k
ð!�EkÞ2�"2k��2

;

f¼ �

ð!�EkÞ2�"2k��2
; (3)

where Ek ¼ 1
2 ð"kþ þ "k�Þ, "k ¼ 1

2 ð"kþ � "k�Þ, and the

explicit dependence on k has been omitted for conve-
nience. We note that, as opposed to the BCS case, the

electron and hole Green’s functions are not symmetric,
due to the unequal masses (and hence the different band
structure).
We now turn to the local tunneling impurity. In real

space, one can imagine it as a point in which the layers
are closer to each other, and hence tunneling there is
amplified [Fig. 1(a)]. Thus, the impurity Hamiltonian is

H imp¼��c ð0Þyþc ð0Þ�þH:c:¼��
X
kk0

cykþck0�þH:c:

(4)

The sign of � defines the nature of the coupling between
the single-particle states of the two layers, with a positive
(negative) � corresponding to bonding (antibonding). The
first is the more natural situation, but one can imagine an
antibonding situation if, for instance, the interlayer tunnel-
ing is mediated by non-s-wave orbitals in the layer sepa-
rating the two quantum wells. As will be evident from the
results, the sign of � has no effect on the final outcome.
In the language of the Nambu operators the impurity

Hamiltonian takes the form

H imp ¼ ��
X
kk0

c y
k �1c k0 ; (5)

where �i, i ¼ 0; . . . ; 3 are the Pauli matrices. The constant
� describes the local tunneling amplitude between the
layers.
To continue, we follow the prescription used by Shiba

and others [14,28] and introduce the T matrix, defined via
the Dyson equation for the Green function in the presence
of the impurity,

Ĝ ¼ ĝþ ĝ T̂ ĝ; (6)

where ĝ is the bare (Nambu) Green function. For a per-
fectly local impurity (as assumed here), the interaction

vertex does not depend on momentum and is given by Û ¼
���1. The T matrix is determined by the equation

Tð!Þ ¼ Ûþ Û
X
k

ĝkTð!Þ; (7)

and

X̂ ¼X
k

ĝk ¼ 2�iN0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!þ�Þ2 � ð�2 � 1Þ�2
p !þ�

��1 ��

� �!þ�
�þ1

 !
;

(8)

where � ¼ m��mþ
m�þmþ

, � ¼ mþ
m�þmþ

Eg, and N0 is the two-

dimensional density of states with the reduced mass. It is
now a matter of straightforward algebra to evaluate the T
matrix. The position of the single-particle level induced by
the impurity potential is determined from the position of
the poles of the T matrix, which are given by

!0þ�¼��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p ffiffiffiffiffiffiffiffiffiffiffi
1��

1þ�

s
; �¼4�2�2N2

0

1��2
: (9)

The real-space length scale associated with the impurity
state may be found by evaluating the real-space depen-
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dence of the single-particle Green function. This amounts
to performing the inverse Fourier transform of the Green
function [Eq. (6)] with the help of the solution of Eq. (7),
and we find that the real-space structure has an exponential
decay around the impurity site (located at r ¼ 0) with a

length scale �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þ=�p
. As � ! 0 the impurity state

merges with the regular excitations, becomes a plain wave,
and hence has a diverging �.

There are several reasons why these impurity-induced
single-fermion bound states are important. First, since they
are optically active (i.e., one can optically excite them and
induce transition between them and the regular excita-
tions), they should be in principle observable to spectros-
copy experiments. Second, they point out the fact that a
simple mean-field approach to disorder in bilayer systems
[22] may not be enough to adequately characterize the
effect of disorder. Finally, as we show below, they induce
interlayer coherence in their vicinity and thus may increase
the critical temperature. In addition, since they are experi-
mentally achievable and due to the analogy with super-
conducting negative-U impurities, they may shed light on
the physics of the latter, which are not experimentally
accessible.

Finite impurity concentration.—Next we turn to the
effect of a finite impurity concentration. The usual treat-
ment of this case dates back to Abrikosov and Gorkov [29],
yet it involves averaging over impurity positions, and thus
fails to produce the single-impurity physics which we are
interested in. For that reason, we choose a real-space
approach, by solving the bilayer problem numerically on
a square lattice. The Hamiltonian is given by

H ¼ �t
X
hi;ji;�

cyi�cj;� þX
i;�

E�c
y
i;�ci;�

þX
i;j

ð�i;jc
y
i;þcj;� þ H:c:Þ � �

X
j

ðcyj;þcj;�Þ; (10)

where again � ¼ � corresponds to the electron and hole
layers, with E� ¼ �Eg=2 (the chemical potentials are

absorbed into this energy, and we keep the populations
equal, as well as the effective masses). t is the usual tight-
binding (intralayer) hopping parameter, and t ¼ 1 sets the
energy scale hereafter. The order parameter �i;j is calcu-

lated self-consistently via

�i;j ¼ U

jri � rjj e
�jri�rjj=�hcyi;þcj;�i; (11)

where U is the strength of the Coulomb interaction, jri �
rjj is the distance between the two sites labeled i and j

(including the interlayer separation d), and � is some
screening length for the Coulomb interaction, which in
principal should be determined from the intralayer
Coulomb screening. We have tested our results for differ-
ent values of � and found no qualitative difference between
them. However, small � allowed for better numerical con-
vergence, and thus the results presented below were per-
formed with � ¼ 1 (in units of lattice spacing). In the last

sum of Eq. (10) � is the interlayer tunneling strength, and
the sum is performed over a randomly chosen set of sites
fjg which comprises a fraction p of the entire lattice.
The numerical calculations were performed until local

self-consistency was achieved for both the order parameter
�i;j and the local density (which we kept at nþ ¼ n� ¼
0:46, i.e., slightly below half filling). From �i;j we define a

local order parameter �i ¼
P

j�i;j. We have performed

our numerical calculations with various parameters (i.e.,
lattice sizes up to 50� 50, interaction strength up to U ¼
4, impurity concentration up to p ¼ 0:3, etc.) and have
found similar results in all of them.

In Fig. 2 we show the average local order parameter �� ¼P
i
0�i as a function of temperature, for different values of

the tunneling amplitude � ¼ 0; 0:1; . . . ; 0:5. The tunneling
impurity concentration is p ¼ 0:1, and the sum is over sites
which do not have a tunneling impurity in them, which
means that we are probing the influence of an impurity on
its vicinity. Other numerical parameters are system size
25� 25 lattice sites, interlayer distance (in units of the
lattice spacing) d ¼ 0:5, and interaction strength U ¼ 1.
As seen, a finite impurity concentration results in an in-
crease in Tc and an apparent smoothing of the transition.
Both these effects should be observable in experiment. We
point out that averaging over disorder will result in similar
effects as long as the self-consistency is obtained before the
disorder averaging, otherwise the result is a uniform re-
normalization of the interlayer coupling which will not
smear the transition.
In the inset of Fig. 2 we plot the real-space structure of

the order parameter along one direction in a system with
the same parameter except the presence of only one impu-
rity (with � ¼ 0:2), located at the center of the lattice, for
different temperatures T ¼ 0:01 to T ¼ 0:3 (with the di-
rection of the dotted arrow). At the temperature which
corresponds to Tc for � ¼ 0 there is a clear jump in the
order parameter, yet it remains finite on sites in the vicinity

x

∆

T

∆

0 0.05 0.1 0.15 0.2 0.25 0.3
0.0

0.1

0.2

0.3

0.4

λ=0

λ=0.5

increasing T

0.0
0.1
0.2
0.3

0 5 10 15 20 25

FIG. 2 (color online). The order parameter, average over sites
without a tunneling impurity, as a function of temperature for
different values of the impurity tunneling amplitude � ¼
0; 0:1; . . . ; 0:5. An increase in Tc and a smearing of the transition
are clearly seen (see text for numerical parameters). Inset: The
real-space dependence of the order parameter around a tunneling
impurity, exhibiting a proximity effect.
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of the tunneling impurity. This strongly resembles the
behavior of the superconducting order parameter in the
vicinity of a negative-U impurity [25], i.e., a proximity
effect. Interestingly, we found from our numerical calcu-
lations that the spatial dependence of the order parameter
(as a function of its distance from the impurity) is approxi-
mately given by �ðrÞ � exp½�ð rr0Þ��, with v� 1=2 and r0
is the length scale for the proximity effect. Both these
parameters are independent of the tunneling amplitude �
and temperature. However, they are sensitive to the inter-
layer Coulomb interaction: � seems to increase upon de-
creasing U (going up to �� 1), and r0 decreases with
decreasing U, as one might expect. Since realistic bilayer
systems are buried under the surface of the device, they are
not amenable to local surface probing, and thus these
parameters are hard to obtain experimentally.

Summary and discussion.—In this work we studied the
properties of an exciton condensate in the presence of an
impurity which induces local tunneling between the layers.
It was shown that the impurities induce subgap single-
particle bound states [Eq. (9)]. It is worth pointing out
that for strong tunneling the impurity states cross the
Fermi level, and a phase transition occurs, since the ground
state will now have an occupied single-particle fermionic
state in it, in similarity to strong magnetic scattering in
superconductors [14]. This transition should have clear
spectroscopic features, since the allowed transitions be-
tween the bands and the impurity levels, as well as the
transitions between the two impurity levels themselves,
will depend on their occupation.

In addition, it was demonstrated that around the impurity
the condensate order parameter is enhanced (Fig. 2). This
is a unique situation, and to see this it is useful to compare
our system to a superconductor with a magnetic impurity
and with a negative-U impurity. In the first case, a single-
particle bound state is formed, but that state disrupts the
order parameter in its vicinity, since it acts as a pair
breaker. In the second case, the order parameter is en-
hanced, but there is no single-particle bound state. The
tunneling impurity in bilayers combines both these effects.
This is due to the unique order parameter of the EC, which
corresponds to the interlayer tunneling amplitude.

In the case where the impurity concentration is very
large, it is well established that the EC long-range coher-
ence would vanish due to fluctuations [6]. The detailed
manner at which the long-range coherence vanishes with
increasing impurity concentration is beyond the mean-field
level of arguments presented here, and requires calcula-
tions in the presence of the order-parameter phase fluctua-
tions (i.e., Kosterlitz-Thouless phase fluctuations and the
presence of supercurrents). There is preliminary indication
that for a small impurity concentration, the supercurrents
simply avoid the impurity [30]. How exactly they behave in
the presence of a large impurity concentration is left for
future studies.
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