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2Institut de Physique Théorique, CEA, (CNRS URA 2306), 91191 Gif-sur-Yvette, France
3Science Finance, Capital Fund Management, 6, Bd. Haussmann, 75009 Paris, France

(Received 15 January 2010; revised manuscript received 19 March 2010; published 23 April 2010)

The ac nonlinear dielectric response �3ð!; TÞ of glycerol was measured close to its glass transition

temperature Tg to investigate the prediction that supercooled liquids respond in an increasingly nonlinear

way as the dynamics slows down (as spin glasses do). We find that �3ð!; TÞ indeed displays several

nontrivial features. It is peaked as a function of the frequency ! and obeys scaling as a function of !�ðTÞ,
with �ðTÞ the relaxation time of the liquid. The height of the peak, proportional to the number of

dynamically correlated molecules NcorrðTÞ, increases as the system becomes glassy, and �3 decays as a

power law of ! over several decades beyond the peak. These findings confirm the collective nature of the

glassy dynamics and provide the first direct estimate of the T dependence of Ncorr.
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Most liquids undergo a transition to an amorphous solid
state, the glass, when the temperature T decreases to their
glass transition temperature Tg. This transition is similar

for a vast variety of systems such as polymeric, colloidal,
and molecular liquids. This ubiquity echoes the universal-
ity of critical phenomena, where the emergence of long
range order makes most of the microscopic details irrele-
vant, yielding the same critical behavior in various sys-
tems. This is why it has been argued for a long time that
some collective effects should be associated to the glass
transition, ultimately related to the proximity of a phase
transition [1]. An immediate problem with this idea is that
standard equilibrium correlation and response functions
remain those of a normal liquid when T ! Tg [2]. In the

two past decades, however, the heterogeneous nature of the
dynamics close to Tg was established [3,4], and a length

scale associated to these dynamic heterogeneities was
estimated [5]. The increase of the number of correlated
molecules Ncorr when T decreases towards Tg is expected

to explain the main aspect of the glass transition, i.e., the
huge increase of the relaxation time; NcorrðTÞ has therefore
become a central concern in the field. The first estimate of
this dependence [6–8] relied on the temperature derivative
of a two-point correlation function. Its relation with the
number of dynamically correlated molecules NcorrðTÞ is
however ambiguous because it involves a temperature
dependent prefactor difficult to estimate and control
[7,9]. Furthermore, this estimator leads to a low-
temperature divergence of NcorrðTÞ for a purely Arrhenius
system, for which no collective behavior is expected, at
least at first sight [7]. An indisputable experimental esti-
mate of the T dependence of the dynamical correlation
volume is thus still lacking. In this work, we fill this gap by
measuring the anomalous increase of a physical suscepti-
bility. It leads to a direct estimate of NcorrðTÞ, up to a
numerical prefactor that is now temperature independent.

Our findings show that supercooled liquids respond in an
increasingly nonlinear way approaching the glass transi-
tion. For many systems, e.g., spin glasses, such an increase
is related to criticality. In the present case, it suggests that
an underlying phase transition could possibly be present as
well, although it does not necessarily imply it.
The spin glass transition taught us that two-point func-

tions can be blind to the amorphous long range order and
that this critical behavior is revealed, in particular, by the
third order nonlinear magnetic susceptibility [10,11]. It
was recently argued [12,13] that the frequency and tem-
perature dependent nonlinear dielectric susceptibility
�3ð!; TÞ in supercooled liquids plays a role similar to the
nonlinear magnetic susceptibility in spin glasses and that
its increase when T decreases would be a signature of the
incipient long range amorphous order. Accordingly,
�3ð!; TÞ should display a peak for !�ðTÞ � 1 whose
height grows as one approaches Tg. Here �ðTÞ is the

relaxation time of the supercooled liquid which increases
rapidly as T decreases toward Tg. Contrary to spin glasses,

however, �3ð! ¼ 0; TÞ should remain trivial since at long
times glasses still behave as disordered liquids [13]. One
expects that when �ðTÞ is large, �3 takes the following
scaling form:

�3ð!; TÞ � �0ð��1Þ2a3
kBT

NcorrðTÞH ð!�Þ; (1)

where NcorrðTÞ is the T-dependent average number of dy-
namically correlated molecules, ��1¼�1ð!¼0Þ�
�1ð!!1Þ is the part of the static linear susceptibility
corresponding to the slow relaxation process we consider,
a3 the volume occupied by one molecule, andH a certain
complex scaling function that goes to zero both for small
and large arguments. The humped shape of jH ð!�Þj is a
distinctive feature of the glassy correlations. Indeed, in the
‘‘no correlation case’’ [14,15], �3ð!; TÞ is given by the
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prefactor of Eq. (1) times a function that, for all T, reaches
its maximum value at ! ¼ 0. Furthermore, NcorrðTÞ does
not show any temperature dependence in that case.

We have devised an experiment to measure, for the first
time, �3ð!; TÞ of a classic glass former (glycerol), via third
harmonics measurements. Our findings are in good agree-
ment with the predictions of Eq. (1): the scaling, the growth
of the number of dynamically correlated molecules with
decreasing T, the humped shape of jH j and its power-law
dependence for !� � 1 are all confirmed experimentally.
The anomalous increase of �3 is compatible with the
existence of incipient critical fluctuations when T ! Tg,

even if our measurements are too far from the possible
critical point to be a clue of criticality.

Our measurements were performed at temperatures be-
tween Tg þ 4 K and Tg þ 35 K, with Tg � 190 K. The
linear susceptibility �1ð!Þ ¼ �0

1ð!Þ þ i�00
1 ð!Þ quantifies

the first harmonic response of polar molecules to a periodic
excitation field Ee�i!t. The polarization, Pð!Þe�i!t, of the
system is given to first order by Pð!Þ ¼ �0�1ð!ÞE. We
define the relaxation time �ðTÞ as the inverse of the fre-
quency f� where �00

1 is maximum. The nonlinear response

is dominated by �3ð!Þ which gives to first order the
magnitude of the third harmonics response to the field at
pulsation ! [14,16], Pð3!Þe�3i!t ¼ �0�3ð!Þ½Ee�i!t�3
(the second harmonics is zero because of the E!�E sym-
metry). While �1ð!; TÞ has been widely studied in super-
cooled liquids [17–19], the T and ! dependence of �3 has
not been measured so far, for any liquid, glassy or not [20].

In a closed cell, two high purity glycerol samples were
prepared between gold plated copper electrodes 2 cm in
diameter, with Mylar� spacers ensuring interelectrode
distances of 19 �m and 41 �m [14,16]. The cell was
placed in a cryogenerator, and the temperature T of the
samples was regulated with a precision of 50 mK. A low
harmonic distortion voltage source yielded a field E� 7�
105 V=m (rms) in the thinnest capacitor, and �3ð!; TÞ was
obtained from the measured third harmonics current Ið3!Þ.
This nonlinear signal was 10�7 to 10�5 of the linear one,
well below the harmonic distortion of electronic devices.
To get rid of them, we used a high sensitivity method based
on a bridge containing the two glycerol capacitors [16].

Figure 1 shows, for five temperatures, the! dependence
of Xð!;TÞ ¼ j�3ð!;TÞj � kBT=½ð��1Þ2a3�0�. According
to Eq. (1), this quantity should be NcorrðTÞjH ð!�Þj. Two
striking results, confirming the predictions of Eq. (1), can
be seen in Fig. 1. First, Xð!;TÞ is actually peaked at a
frequency f� of the order of 1=�ðTÞ; more precisely f� ’
0:21=�ðTÞ. Second, the height of the peak, which should be
proportional to NcorrðTÞ, increases significantly as T de-
creases. The small value of Xð!; TÞ can be understood
from calculations of �3ð!; TÞ for molecules undergoing
independent rotational Brownian motion [14,15], which
should be accurate for simple supercooled liquids at high
T. They indicate that for the ‘‘no correlation’’ case,
Xð!; TÞ � 0:2.

Towhat extent is the scaling predicted by Eq. (1) verified
by �3ð!; TÞ? Figure 2 shows the same data as in Fig. 1 but
plotted as a function of logðf=f�Þ with f� ¼ �ðTÞ�1, and
normalized by their maximum at each T. We also show the
phase of �3. Both the moduli and the phases collapse fairly
well on a single master curve, as predicted by Eq. (1). A
weak departure from scaling occurs at low ! for the high-
est T. This is not surprising: scaling should not hold far
above Tg, where the dynamical correlations become short-

ranged [12,13]. Furthermore, the nonlinear response re-
sults both from trivial dielectric saturation effects
[15,21,22] (always present for !� < 1), and from the non-
trivial dynamical correlations contribution. As the latter
vanishes when ! ! 0 ([12,13]), the contribution of the
trivial saturation effect should dominate at high T and low
!. The observed departure from scaling can thus be ex-
plained by the different T and ! dependencies of the two
contributions.

FIG. 1 (color online). For each of the five temperatures label-
ling the curves, Xð!; TÞ ¼ j�3ð!; TÞj � kBT=½�0ð��1Þ2a3� is
given as a function of frequency f ¼ !=2�. The arrows indicate
the five relaxation frequencies f�ðTÞ, for which �00

1 ð!Þ is maxi-

mum. The dashed lines are a guide to the eye.

FIG. 2 (color online). The quantity j�3ð!; TÞj at five tempera-
tures (same data and symbols as in Fig. 1), normalized to its
maximum value at each T, plotted as a function of the ratio
f=f�ðTÞ. The straight line is a power law with an exponent
�0:65. Inset: corresponding phase of �3ð!; TÞ.
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Figure 3 gives the T dependence of the maximum value
of Xð!;TÞ, reached for ! ¼ !� ¼ 2�f�. Since scaling is
well obeyed, Eq. (1) tells us that this maximum value is
proportional toNcorrðTÞ. A clear increase of this quantity as
T decreases toward Tg is visible in Fig. 3. This is one of the

main results of our study, and strong experimental evidence
of growth of the dynamical correlation length close to Tg.

We now investigate how our results are related to another
estimate of the size of the dynamical heterogeneities, using
the temperature derivative of �1ð!Þ.

In [7,8], the T derivative of the two-body correlation
CðtÞ (or of �1ð!Þ) was introduced as a new response
function �TðtÞ ¼ @CðtÞ=@T. It turns out that T�TðtÞ is
also proportional to a dynamical correlation volume, but
with an unknown, and possibly T-dependent prefactor
[7,9]. The line in Fig. 3 is the number of correlated mole-
cules estimated from max!½T@ð�0

1ð!Þ=��1Þ=@T� where,
due to the unknown value of H , the normalization was
chosen such that it coincides with Xð!�; T ¼ 202 KÞ. We
see that the T dependencies of these two quantities are
close. However, whereas the increase of Xð!�; TÞ is a proof
of a growing correlation length, one needs some extra
assumptions to infer this from �T [7]. That �3 and �T

lead to a similar T dependence for NcorrðTÞ suggests that
these assumptions are indeed warranted (at least for glyc-
erol) and validates the simpler procedure advocated in [6],
and used extensively in [8], to extract NcorrðTÞ.

A precise identity relating �T and �3 has been obtained
in [13]. It holds at low enough ! when the linear response
depends only on external parameters (T, density, electric
field, . . .) via the dependence of �ðTÞ on these parameters, a
property called time temperature superposition (TTS), and
reads:

�3ð!Þ � ��̂Tð2!Þ !� 	 1; (2)

where � is independent of ! and �̂T is the Fourier
transform of �T . Corrections to this relation in the r-

egime !� 	 1 are due to weak violations of TTS and to
the additional term that corresponds to ! independent
noncooperative degrees of freedom. The continuous line
in Fig. 4 presents Xð!; TÞ calculated from the linear
susceptibility, according to Eq. (2) with � ¼ 7:6�
10�17 Kðm=VÞ2. This value of � was chosen to be consis-
tent with Fig. 3, i.e., by demanding that the maximum over
! of �j�̂Tð2!Þj corresponds to X ¼ 0:40 which is the
value of the continuous line of Fig. 3 for T ¼ 210:2 K.
Although Eq. (2) should only be valid at small !, we see
that it reproduces qualitatively the overall behavior of the
data at 210.2 K. At low frequency, !� < 0:2, the discrep-
ancy can be understood by the contribution of the !
independent trivial saturation effect noted above. For
!� > 1, our data exhibit a clear power-law behavior with
a fitted exponent �0:65
 0:04, see also Fig. 2, which is
close to that describing the decay of �̂Tð2!Þ. This behavior
is predicted by mode-coupling theory (MCT) [13], and our
experimental exponent is compatible with the MCT pre-
diction �b ’ �0:6 for glycerol [23]. Note however that
MCT should in fact be relevant only at temperatures much
higher than the ones we focused on. Hence, the existence of
a power-law regime for large ! with identical exponents
for both �1 and �3 appears to be a generic property, valid
outside the MCT regime. We think that this might be
related to the possible incipient criticality of the system.
We now address the question of a possible heating

contribution to our results. Such effects would come
from the fact that applying the field EðtÞ ¼ E cosð!tÞ
across the glycerol sample leads to a dissipated power
per unit volume pðtÞ / !�00

1 ð!ÞE2½1þ cosð2!t��Þ�
(see [14]). The resulting temperature increase is the sum
of a constant term and a term 	T2!ðtÞ, oscillating at 2!.
This 	T2!ðtÞ oscillation leads to a modulation of the linear
susceptibility 	�1ð!ÞðtÞ ¼ ð@�1ð!Þ=@TÞ	T2!ðtÞ, thus to a
3! modulation of the polarization PðtÞ / �1E. We calcu-
lated precisely this 3! heating contribution using the heat
propagation equation [14]. This calculation gives an upper
limit to the heating effects contribution, in particular for
f � f�, because the finite relaxation time � of the mole-
cules prevents them from following instantaneously the
temperature oscillation 	T2!ðtÞ (as already advocated by
Richert et al. [24]). A representative example of these
calculations is given on Fig. 4: the heating effects are
negligible in most of the frequency range of interest, in
particular, around the �3ð!Þ peak. Thus, our estimate of
NcorrðTÞ and the power law dependence of �3ð!Þ are not
affected by heating.
Our results should allow significant progress of models

which predict or assume dynamical correlations in super-
cooled liquids. Such models should not only reproduce the
increase of the correlated volume we found as T ! Tg (see

Fig. 3), but they should also account for the magnitude and
shape of �3ð!; TÞ, given by the H function in Eq. (1),
which carries important information on the physics of the
dynamical correlations [12,13]. Recently, Richert et al. put

FIG. 3 (color online). The measured quantity
max!½Xð!; TÞ� ¼ max!ðj�3ð!; TÞjÞ � kBT=½�0ð��1Þ2a3� plot-
ted vs temperature. The continuous line is the number of
correlated molecules estimated from T�T (see [8]) with an
arbitrary normalization chosen so that it coincides with the
experimental points at 202 K.
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forward a phenomenological model [21,24,25] which ac-
counts for their nonlinear susceptibility data at 1!. In this
model, the supercooled liquid is thought of as a collection
of ‘‘Debye-like’’ dynamical heterogeneities (DHs), each of
them having its own relaxation time �dh. The model posits
that the electrical power absorbed by each DH raises its
temperature above that of the phonon bath. A nontrivial
and crucial assumption is that heat exchange between the
slow degrees of freedom and the phonon bath is set by the
local relaxation time �dh, and not by a microscopic vibra-
tion time. As a result, each DH has its own fictive tem-
perature with a dc and an ac component. Again, the ac
component 	Tdh;2!ðtÞ leads to a 3! ‘‘heating’’ contribution

to the polarization PðtÞ. Such a contribution to �3 should
however not be considered to be in competition with the
critical dynamical correlations related to the glassy dynam-
ics [12,13]. As this model assumes a priori the existence of
dynamical heterogeneities, it should be seen as a phenome-
nological description of the influence of dynamical corre-
lations on the nonlinear susceptibility. We calculated the
prediction of this model for the 3! nonlinear response and
found that �3ð!Þ is indeed peaked at a frequency of the
order of 1=�ðTÞ. However, some assumptions are needed to
generalize the model to the 3! response. These assump-
tions influence the magnitude and position of the peak and
deserve further scrutiny. A detailed comparison of this
model to our data will be presented in a subsequent paper.
In any case, we believe that for a proper prediction of
�3ð!; TÞ close to Tg, a theory of supercooled liquids able

to account for dynamical correlations is required.
To conclude, we have provided the first direct experi-

mental evidence that a supercooled liquid responds in an
increasingly nonlinear way approaching the glass transi-
tion. By measuring the frequency dependent third harmon-
ics response �3ð!; TÞ to a periodic electric field, which is
tightly related to the dynamical correlation length, we

showed that the number of correlated molecules increases
as T decreases towards Tg, confirmed the validity of pre-

vious estimates, and found that �3 scales as a function of
!�. This opens a new path for probing the spatial correla-
tions in both fragile and strong supercooled liquids and in
the aging regime of glasses and spin glasses, by systematic
studies of nonlinear responses. Future investigations along
these lines might help to unveil the possible critical nature
of the glass transition.
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[11] L. P. Lévy, Phys. Rev. B 38, 4963 (1988).
[12] J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204

(2005).
[13] M. Tarzia, G. Biroli, A. Lefèvre, and J.-P. Bouchaud,
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