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We analyze the Bose-Hubbard model with a three-body hard-core constraint by mapping the system to

a theory of two coupled bosonic degrees of freedom. We find striking features that could be observable in

experiments, including a quantum Ising critical point on the transition from atomic to dimer superfluidity

at unit filling, and a continuous supersolid phase for strongly bound dimers.
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Experiments with atomic quantum degenerate gases
representing strongly interacting systems have reached a
level of precision where quantitative tests of elaborate
many-body theories have become possible [1–5]. In the
interplay between experiment and theory, the challenge is
now to identify realistic models where quantum fluctua-
tions lead to qualitatively new features beyond mean field
in quantum phases and phase transitions. We study below
the Bose-Hubbard model with a three-body constraint,
which arises naturally due to a dynamic suppression of
three-body loss of atoms occupying a single lattice site
[6,7], and can also be engineered via other methods [8].
This constraint stabilizes the system when two-body inter-
actions are attractive, allowing for the formation of
dimers—bound states of two atoms. The phase diagram
then contains a dimer superfluid (DSF) phase connected to
a conventional atomic superfluid (ASF). Remarkably, this
simple but realistic model shows several nongeneric fea-
tures, which are uniquely tied to the three-body constraint
and could be observed with cold gases: (i) Emergence of an
Ising quantum critical point (QCP) on the ASF-DSF phase
transition line as a function of density—which generically
is preempted by the Coleman-Weinberg mechanism [9],
where quantum fluctuations drive the phase transition first
order [10–12], with a finite correlation length; and (ii) a
bicritical point [13] in the strongly correlated regime,
which is characterized by energetically degenerate orders,
in our case coexistence of superfluidity and a charge-
density wave, representing a ‘‘continuous supersolid’’
with clear experimental signatures.

Below we describe the constrained model, and then
present a new analytical formalism for a unified treatment
of on site constraints in bosonic lattice models, based on an
exact requantization of the Gutzwiller mean field theory.
This allows for an analytical treatment of the phenomena
arising here. At the end we discuss the experimental sig-
natures of the latter.

Constrained model.—We consider the Bose-Hubbard
model on a d-dimensional cubic lattice with a three-body

on site hard-core constraint, ay3i � 0,

H ¼ �J
X
hi;ji

ayi aj ��
X
i

n̂i þ 1

2
U
X
i

n̂iðn̂i � 1Þ; (1)

where hi; ji denotes summation over nearest neighbors, J is
the hopping matrix element, � the chemical potential, and
U the on site two-body interaction. The three-body con-
straint stabilizes the attractive bosonic many-body system
with U < 0, which we focus on here.
The phase diagram of this model is shown in Fig. 1. The

dominant phases are an ASF with order parameters haii �
0 and ha2i i � 0, and a DSF with ha2i i � 0 but haii ¼ 0,
formed at sufficiently strong interatomic attraction U. In
the Gutzwiller mean field approximation [6] these two
phases are separated by a second order phase transition
of a special type, the Ising or ASF-DSF transition [12], at
which the discrete Z2 symmetry of DSF is spontaneously
broken. One reason to question the mean field approach is
the presence of two interacting soft modes close to the
phase transition: the noncritical Goldstone mode, related to
the ha2i i order parameter, and the critical Ising mode signal-
ing the onset of atomic superfluidity with haii � 0. This
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FIG. 1 (color online). Phase diagram for the Bose-Hubbard
model with a three-body hard-core constraint, and U < 0. The
black curve represents the mean field phase border, while red
(light gray) and blue (dark gray) curves include shifts due to
quantum fluctuations in d ¼ 2, 3.
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motivates the development of a fully quantum mechanical
approach to the constrained Hamiltonian (1), with a unified
description of interaction effects at various scales.

Formalism: Mapping the constrained model to a coupled
boson theory.—Because of the constraint, the operators ai,

ayi are no longer standard bosonic ones and the on site
Hilbert space is reduced to only three states j�i, corre-
sponding to zero (� ¼ 0), single (� ¼ 1), and double (� ¼
2) occupancy. Following Altman and Auerbach [14], for

each lattice site i we introduce three operators ty�;i creating
these states out of an auxiliary vacuum state, j�ii ¼
ty�;ijvaci ¼ ð�!Þ�1=2ðayi Þ�jvaci. By construction, these op-

erators obey a holonomic constraint,
P

�t
y
�;it�;i ¼ 1. The

Hamiltonian then reads

H ¼ �J
X
hi;ji

½ty1;it0;ity0;jt1;j þ 2ty2;it1;it
y
1;jt2;j

þ ffiffiffi
2

p ðty2;it1;ity0;jt1;j þ ty1;it0;it
y
1;jt2;jÞ� þU

X
i

n̂2;i

��
X
i

ðn̂1;i þ 2n̂2;iÞ; (2)

where n̂�;i ¼ ty�;it�;i. This form is closely related to reso-

nant Feshbach models describing, e.g., the BCS-BEC
crossover [15]: The ‘‘Feshbach term’’ (second line, first
term) allows interconversion of a ‘‘dimer’’ (t2;i) into two

‘‘atoms’’ (t1;i), and the detuning (second term), gives the

corresponding energy difference. This detuning is given by
the interaction U, in contrast to�1=U in resonant models.

Using the constraint, we can eliminate one of the opera-

tors t�;i in Eq. (2), say t0;i, as t0;i !
ffiffiffiffiffi
Xi

p
(and ty0;i !

ffiffiffiffiffi
Xi

p
),

where Xi ¼ 1� n̂1;i � n̂2;i. Noting that X2
i ¼ Xi on the

constrained space, we replace
ffiffiffiffiffi
Xi

p
with Xi, yielding a

polynomial Hamiltonian. The remaining operators t1, t2
can now be interpreted as standard bosonic ones. To dem-
onstrate this, one divides the standard bosonic Hilbert
space into a physical (P i) and an unphysical (Ui) sub-
space, H i ¼ P i �Ui, where the physical one consists of
states obeying the three-body constraint. We see that H
does not couple the physical P ¼ Q

P i and unphysical
U ¼ Q

Ui subspaces.
The distinction between the contributions from physical

and unphysical spaces can most conveniently be achieved
by using the quantum effective action �½t1; t2� [16], which
is a functional on classical fields and provides all one-
particle irreducible correlation functions as coefficients
of an expansion in powers of t1 and t2. Because � is
formulated in terms of physical quantities, we can restrict
its general form to a polynomial obeying the three-body
constraint. The form of the effective action thus is re-
stricted by the constraint, in addition to the symmetries
of the microscopic theory.

To apply the above construction to a many-body
system, one has to choose the proper ground state and
the corresponding operators. Following Ref. [17], we in-
troduce new operators b�;i ¼ ðRiÞ��t�;i (�, � ¼ 0, 1, 2),

with a unitary transformation R. The parameters of R are
such that b0;i creates the mean field vacuum, and b1;i and
b2;i correspond to fluctuations on top of this state, with

vanishing expectation values (see [18]). The DSF ground
state, for example, corresponds to: b0;i ¼ cosð�=2Þt0;i þ
sinð�=2Þ expð�i�Þt2;i, b2;i ¼ cosð�=2Þt2;i � sinð�=2Þ�
expði�Þt0;i, and b1;i ¼ t1;i, where � is an arbitrary phase

and the angle � 2 ½0; �� is such that 2sin2ð�=2Þ ¼ n, the
density of atoms (on the mean field level for simplicity).
The operators b�;i are subject to the same constraint,P

�b
y
�;ib�;i ¼ 1, and we can eliminate bðyÞ0;i as described

above. This results in a polynomial Hamiltonian for the
remaining operators b1;i and b2;i, where the operator inde-
pendent part reproduces the Gutzwiller energy.
Application of the formalism.—The limit n ! 0 gives a

stringent check of our formalism, where we recover the
nonperturbative Schrödinger equation for the dimer bound
state formation (see [18] for details). We now apply our
method in the many-body context:
(i) Ising quantum critical point.—The polynomial

Hamiltonian describes atomic (b1;i) and dimer (b2;i) fluc-
tuations around the spatially uniform DSF state. After
taking the long wavelength continuum limit, one can easily
see that there are two soft modes in the vicinity of the ASF-
DSF transition: the noncritical Goldstone mode ��
Imðb2Þ corresponding to the Uð1Þ=Z2 gauge symmetry
broken by the presence of the dimer condensate, and the
critical atomic Ising mode ’� Reðb1Þ signaling the ap-
pearance of an atomic condensate. The other two modes
remain massive and do not affect the physics of the phase
transition. Integrating out the latter we obtain an effective
low energy action for the soft modes [18]:

Seff½’;�� ¼
Z
x

�
1

2
’ð�Z’@

2
� � �2þ�þm2þÞ’þ 	’4

þ 1

2
�ð�Z@2� � �2�Þ�þ i
’2@��

�
: (3)

It describes phonons � in the dimer superfluid coupled to a
real scalar Ising field ’, in turn represented by an action of
the Ginzburg-Landau type with the ‘‘mass’’ parameter m2þ
crossing zero at the ASF-DSF transition. The coupling 


comes from the cubic coupling � ffiffiffi
2

p
J cosð�Þby2;ib1;ib1;j þ

H:c: which originated from the ‘‘Feshbach term’’ in the
original Hamiltonian Eq. (2), such that 
� cosð�Þ � 1�
n. This cubic coupling of Goldstone to Ising mode with
linear time derivative has the same degree of relevance as
the Ising coupling 	, leading to the Coleman-Weinberg
(CW) phenomenon [10]: The renormalized value of the
Ising coupling 	 reaches zero at some finite scale � at
which m2þ is still positive. As a result, terms with higher
powers of ’, which are generated by fluctuations, become
important. These self-interaction terms provide a new
minimum with h’i � 0, which is reached via a first order
phase transition with finite correlation length �. Therefore,
the ASF-DSF phase transition is first order, contrary to the
predictions of the mean field approach.
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The coupling via a temporal derivative and, therefore,
the CW phenomenon, is rather generic in nonrelativistic
systems, in which an Ising field emerges as an effective low
energy degree of freedom [10–12]. In our case, however,
the coupling 
 vanishes for n ! 1. The existence of such a
decoupling point can be proven assuming a continuous,
monotonic behavior of a particular compressibility, the �
derivative of the dimer mass termK ¼ �dm2

d=d�jn within
the DSF phase: it then must have a unique zero crossing,
because it is>0 ð<0Þ for n ¼ 0 ð2Þ [18]. This argument is
tied to the existence of a maximum filling, and thus to the
three-body constraint. Using the Ward identities resulting
from a temporally local gauge invariance b� !
exp½i�	ðtÞ�b�, � ¼ 1, 2, and � ! �þ i	ðtÞ [19], we
see that 
 / K. As a result, the first order Z2 transition
terminates into a true ðdþ 1Þ-dimensional Ising quantum
critical point in the vicinity of unit filling.

Fluctuations also shift the mean field phase boundary, cf.
Fig. 1. This is only pronounced for n � 1, as dimer for-
mation and atom criticality approach each other for n ! 0
[18].

(ii) Continuous supersolid.—Another peculiar conse-
quence of the three-body constraint occurs for dimers in
the strong coupling limit, where single particle excitations
are strongly gapped (�jUj=2) and can be integrated out
perturbatively. Taking the dominant nearest neighbor hop-
ping t and interaction v into account, the effective lattice
theory for hard-core bosons (dimers or diholes) can be
conveniently rewritten as an antiferromagnetic
Heisenberg spin Hamiltonian (see, e.g., [20]),

HAFM ¼ 2t
X
hi;ji

½sx;isx;j þ sy;isy;j þ 	sz;isz;j� (4)

restricted to a subspace with a fixed projection of the total
spin on the z-axis, Sz ¼ P

isz;i ¼ Lðnd � 1=2Þ, where L is

the total number of the lattice sites, and nd ¼ n=2 the
dimer filling. The anisotropy parameter 	 is the ratio of
the interaction and hopping, 	 ¼ v=2t. In the leading
second order perturbation theory, we find t ¼ v=2 ¼
2J2=jUj, such that 	 ¼ 1 and the Hamiltonian (4) is
SO(3) invariant, corresponding to a symmetry enhance-
ment compared to the conventional SOð2Þ ’ Uð1Þ phase
symmetry for bosons. It parallels a similar effect for
attractive lattice fermions [21], and is a peculiar feature
of the three-body hard-core constraint—if virtual triple and
higher occupancies are allowed, one finds 	 ¼ 4 [22]. The
symmetry enhancement is operative for exactly half filling
of dimers, nd ¼ 1=2, where Sz ¼ 0, while for other dimer
fillings Sz � 0 and the symmetry is reduced to U(1). In the
first case, however, the ground state of the Hamiltonian (4)
is the antiferromagnetic state parametrized by the direction
of the Néel order parameter on the three-dimensional
Bloch sphere. Generically, the Néel order parameter has
components both in the xy plane and along the z axis. This
means that the ground state of bosons has both DSF and
charge-density wave (checkerboardlike, CDW) orders, i.e.,
is a supersolid. The specific feature, however, is that the

SO(3) symmetry admits a continuous change in the ratio
between the two order parameters without changing the en-
ergy, and this state may thus be called a continuous super-
solid. A particular choice of the order parameters depends
on the system preparation and boundary conditions, in
contrast to supersolidity in other bosonic systems [23].
The spontaneously broken SO(3) symmetry in the con-

tinuous supersolid provides two massless Goldstone
modes. A spin wave analysis yields their dispersion

!ðqÞ ¼ tz½~�qð1þ 	� 	~�qÞ�1=2

with ~�q ¼ ð1=dÞP	ð1� cosq 	 e	Þ, 	 
 1. For 	 ¼ 1 the

second Goldstone mode emerges at the edge of the
Brillouin zone, adding to the one at zero momentum. In
the next (fourth) order of perturbation theory, we find [18]
	 ¼ 1� 8ðz� 1ÞðJ=jUjÞ2 < 1, and the DSF ground state
is slightly favored over CDW order due to weak explicit
breaking of SO(3). Still, the proximity to the continuous
supersolid manifests itself in a weakly gapped (�� tzð1�
	Þ) collective mode at the edge of the Brillouin zone,
which may be probed experimentally, see below.
Experimental signatures.—We now discuss in detail the

experimental signatures of the critical behavior and con-
tinuous supersolid. Above we showed that the ASF-DSF
phase transition (see Fig. 1) terminates in an Ising quantum
critical point at n ¼ 1. The phase transition is thus second
order at n ¼ 1, with a diverging correlation length at the
transition point. Away from n ¼ 1 the transition is first
order, with a finite correlation length estimated as �=a�

�6 � j1� nj�6 (a the lattice spacing) using the renor-
malization group flow of [10]. As typical of the radiatively
induced first order transitions, the near-critical domain is
large, with a correlation length exceeding the typical extent
of optical lattices of 50 to 100 sites in a region 1=2 & n &
3=2. This behavior can be measured directly in experi-
ments probing the correlation length, as done in Ref. [1].
Alternatively, critical opalescence via damping of collec-
tive oscillations [24] could be probed.
The continuous supersolid appearing at strong attraction

and unit filling can be detected by measurement of the
coexisting spatial order and dimer superfluid correlations.
The spatial structure could be detected via noise correla-
tion measurements [25], and the dimer superfluid correla-
tion functions in the momentum distribution of dimers,
which could be imaged, e.g., by associating atoms to
molecules, and measuring their momentum distribution.
The CDW can also be stabilized with a weak (�� � tz)
superlattice, which acts as a staggered external field that
rotates the Néel order parameter to the z axis.
We further elaborate on experimental signatures using

exact numerical time-dependent density matrix renormal-
ization group (t-DMRG) techniques [26] in 1D: Fig. 2(a)
shows the density-density correlation function hniniþxi �
hniihniþxi characterizing CDW order, and the DSF corre-

lator hbyi byi biþxbiþxi as a function of distance x in the
ground state for realistic experimental size scales and
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parameters. At unit filling, both decay algebraically and are
essentially equal, indicating coexistence both orders. In
Fig. 2(b) we show the result of fitting an algebraic decay
xKCDW;DSF to the correlation functions. For n ¼ 1 these are
equal, but away from unit filling, the DSF correlations
decay more slowly, so that DSF order dominates CDW.
(The large fluctuations in KCDW with varying n are due to
the interplay between filling fraction and CDW order.) In
experiments in a harmonic trap, where the filling factor
varies across the system, this gives rise to further signa-
tures. In Fig. 2(c), we plot the density in a trap, showing
that a region exists near unit filling where oscillations in
the density are present, characteristic of the appearance of
CDW order. Figure 2(d) shows that in the same region the
DSF correlations are significant, whereas in the center of
the trap, a constraint-induced insulating phase with n ¼ 2
appears. For more details see [18].

Conclusion.—We have demonstrated that an atomic
Bose gas in an optical lattice with three-body on site
constraint provides a realization of such fundamental
physical concepts as the Coleman-Weinberg phenomenon
of radiative mass generation and Ising quantum criticality.
In addition, the ground state at unit filling in the strongly
correlated limit is an example of a continuous supersolid—
a supersolid with a tunable ratio between the superfluid and
the charge-density wave order parameters.
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FIG. 2 (color online). Ground state computations on 60 lattice
sites with U=J ¼ �20 using t-DMRG. (a) Correlation functions
characterizing the CDW and DSF orders for open boundary
conditions at unit filling on a log-log scale as a function of
distance x. (b) Fitted algebraic decay exponents KDSF and KCDW
for varying n (error bars show estimates of the fitting error).
(c) Density nðxÞ for a system with a harmonic trapping potential
VðxÞ=J ¼ ðx� 30:5Þ2=900, N ¼ 60 particles. (d) Shaded plot of
the DSF correlation function hbyx byx bybyi with interpolated shad-
ing, indicating substantial DSF order where n� 1.
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