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We show, using detailed numerical analysis and theoretical arguments, that the normalized participation

number of the stationary solutions of disordered nonlinear lattices obeys a one-parameter scaling law. Our

approach opens a new way to investigate the interplay of Anderson localization and nonlinearity based on

the powerful ideas of scaling theory.
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Introduction.—Wave propagation in naturally occurring
or engineered complex media is an interdisciplinary field
of research that addresses systems as diverse as classical,
quantum, and atomic-matter waves. Despite this diversity,
the wave nature of these systems provides a common
framework for understanding their transport properties
and often leads to new applications. One such character-
istic is wave interference phenomena. Their existence re-
sults in a complete halt of wave propagation in random
media, which can be achieved by increasing the random-
ness of the medium. This phenomenon was predicted 50
years ago in the framework of quantum (electronic) waves
by Anderson [1] and its existence has been confirmed in
recent years in experiments with classical [2–10] and
matter waves [11,12].

In many of these experiments, the appearance of non-
linearities, induced either due to the nonlinear Kerr effect
(in the framework of nonlinear wave propagation in dis-
ordered photonic lattices) [8–10] or due to atom-atom
interactions (in atomic transport of Bose-Einstein conden-
sates in optical lattices) [11,12], might affect drastically the
phenomenon of Anderson localization. An important ques-
tion is therefore how the interplay between disorder and
nonlinearity might complement, frustrate, or reinforce
each other [13–16]. This notion is not only of experimental
importance; it raises a number of unsolved theoretical
questions as well. The theoretical study of localization in
random nonlinear lattices has been advanced using several
approaches, including the studies of transmission [17],
wave packet dynamics [18], and stationary solutions [19–
21].

In this Letter, we approach the interplay of nonlinearity
with disorder from a different perspective; namely, we
develop a scaling theory for localization phenomena in
nonlinear random media described by the discrete non-
linear Schrödinger equation (DNLSE). Scaling ideas
played a major role in understanding various properties
of linear disordered systems, including the structure of
their eigenstates [22–25]. However, solutions of the
DNLSE, for sufficiently strong nonlinearity, have nothing

in common with the solutions of the linear problem.
Indeed, the number of solutions of the DNLSE is generally
much larger than the number of eigenstates of the corre-
sponding linear problem, and in particular, many solutions
appear outside the spectrum of the linear system. It is
therefore quite remarkable that the scaling ideas can be
extended to the nonlinear case. Specifically, we find that
the rescaled participation number pNð�Þ of the stationary
solutions of the DNLSE of lattice sizeN and nonlinearity�
obeys a one-parameter scaling, i.e.,

@pNð�Þ
@ lnN

¼ �ðpNð�ÞÞ where pNð�Þ ¼ h�Nð�Þi
h�ref

N ð�Þi : (1)

Above, � is a universal function of pN alone, which is
independent of any microscopic properties of the system
under investigation, and h� � �i denotes an averaging over
disorder realizations and over states within a small fre-
quency window. The participation number �N is [26]

�N � 1P
N
n¼1 jc nj4

(2)

and is proportional to the effective number of nonzero
components c n of a stationary solution of the DNLSE.
�ref
N is the participation number for some reference en-

semble, chosen such that it supports the most extended
states for a specific lattice topology and nonlinearity. It will
be argued below that �ref

N is proportional to the system size
N. Note, however, that it would not be accurate to replace
�ref
N with N because the coefficient of proportionality be-

tween the two lengths depends weakly on �. Equation (1)
is confirmed in the following via detailed numerical simu-
lations with quasi-one-dimensional disordered systems de-
scribed by banded random matrix (BRM) models and is
supported by theoretical arguments [27].
Mathematical model.—We consider a class of random

systems described by the time-independent DNLSE:X
m

Hnmc m þ �jc nj2c n ¼ !c n; (3)

where! are the frequencies of the stationary solutions and
c n is their amplitude at site n. The connectivity matrix H
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defines the topology of the sample. In the case of strictly
one-dimensional (1D) disordered systems, it is a three-
diagonal matrix with Hn;n�1 ¼ �1, while Hnn are random

independent variables given by some distribution. In our
simulations below, we consider the challenging case where
H belongs to a BRM ensemble, having in mind quasi-1D
systems with b propagating modes [23,24].

The BRM ensemble is defined as a set of real symmetric
N � N matrices with elements Hnm ¼ 0 for jn�mj � b,
while inside the bandwidth b they are independent random
variables given by a Gaussian distribution of mean zero
and fixed variance [23]

hHnmi ¼ 0; hH2
nmi ¼ ðN þ 1Þð1þ �nmÞ

bð2N � bþ 1Þ : (4)

With this normalization, the eigenvalues of H (in the limit
of large N, b) are located in the interval (� 2, 2) [23].

Numerical method.—The stationary solutions of the
nonlinear Eq. (3) were found numerically by utilizing a
continuation method approach. Starting with the linear
modes of H as an initial guess, we take a small step in �
(��� 10�4), and solve the nonlinear system of Eq. (3).
This is achieved by minimizing a multivariable (N þ 1)-

dimensional vector function ~Fn ¼
P

mHnmc m þ
�jc nj2c n �!c n, n ¼ 1; 2; . . . ; N and ~FNþ1 ¼P

njc nj2 � 1. Using this method we find (fc ng; !) with
tolerance 10�8. The resulting solution then becomes the
initial guess for the nonlinear solver for the next step in �.

An ‘‘evolution’’ of a representative Anderson localized
mode as nonlinearity � increases is reported in Fig. 1. We
observe that while initially (small � values) its shape
remains unaffected, eventually it starts to delocalize until
it spreads over the whole sample. The degree of delocali-
zation as a function of � is reflected in the behavior of the
participation number �Nð�Þ (lower panel of Fig. 1). We
want to investigate how the average participation number
h�Ni of the stationary modes of Eq. (3) is affected by
nonlinearity. The averaging h� � �i has been performed
over solutions with corresponding ! being inside a small
frequency interval (below ! 2 ½�1; 1�) such that the na-
ture of wave functions is statistically the same. For better
statistical processing, a number of disorder realizations
have been used, such that the total number of obtained
stationary solutions is at least 104.

Nonlinear localization length.—We start our analysis by
introducing the asymptotic localization length �� defined

via the participation number �N:

�� ¼ lim
N!1h�Nð�Þi: (5)

In Fig. 2(a) we report some representative data for the
participation number h�Nð�Þi, as a function of the system
size N. From these plots we extract the saturation value ��.

The resulting data are summarized in Fig. 2(b) by referring
to the rescaled localization length ��=�0, where �0 is the

localization length given by Eq. (5) for the linear (i.e., � ¼
0) system [28]. We find that

��

�0

/
�
1 for �< �	ffiffiffiffi
�

p
for � 
 �	; (6)

where �	 � 0:3 [18]. A simple interpolation formula
which agrees with our numerical results [see Fig. 2(b)] is

�� ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0�

p
; (7)

where the fitting parameter a0 was found to be a0 � 3.
While interpreting the above equations, it is crucial to keep
in mind that all the lengths depend on frequency !—when
comparing these lengths for different values of the non-
linearity �, one should keep ! (approximately) fixed.
The following heuristic argument provides some under-

standing of the behavior of �� in the two limiting cases.

First, let us note that the inverse of the participation num-
ber ��1

N ð�Þ is proportional to the interaction energy stored
in the system described by the DNLSE, i.e., Eint ¼
�
2

P
njc nj4. For � ¼ 0 the localization length �� is equal

to �0, while due to normalization the corresponding sta-

tionary solutions of Eq. (3) are c ð0Þ
n � 1=

ffiffiffiffiffiffi
�0

p
. When �

increases, Eint grows within the localization length �0, but
! is assumed to be approximately fixed. This increase in
Eint is compensated by further spreading of the wave
function beyond �0. The first question is, what is the value
of the nonlinearity strength �	, for which the spreading
beyond �0 becomes significant? An estimation is achieved

by comparing the interaction energy Eint ¼
ð�=2ÞPnjc ð0Þ

n j4 � ð�=2Þ�0ð1=�2
0Þ ¼ �=2�0 stored in the

FIG. 1 (color online). Upper panel: Parametric evolution as the
nonlinearity � increases of a stationary solution of the BRM,
Eq. (3), with b ¼ 4. For � ¼ 0 the mode is exponentially
localized. while as � increases it becomes delocalized over the
whole lattice. Lower panel: The participation number �Nð�Þ
(solid black line) as a function of �. The coloring reflects the
wave function intensity shown in the upper panel.
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‘‘localization box’’ of size �0 to the corresponding mean
level spacing ��0

� 1=�0. From this comparison, we get

�	 � 1.
Next, we consider the limit � 
 �	, when �� 
 �0. In

this case, the wave functions c ð�Þ � 1
ffiffiffiffi
�

p
spread over

��=�0 ‘‘localization boxes.’’ We make the following self-

consistent argument: The total interaction energy stored is

Eint ¼ ð�=2ÞPnjc ð�Þ
n j4 � ð�=2Þ��ð1=�2

�Þ ¼ �=2��. The

interaction energy per box is therefore ð�=2��Þð�0=��Þ ¼
ð�=2Þ�0=�

2
�. However, from the previous considera-

tions we know that one localization box can ‘‘resist’’ an
energy ��0

�1=�0. A self-consistency condition gives

����0
ffiffiffiffi
�

p
, which agrees with the �
�	 asymptotic in

Eq. (6).
Reference ensemble.—The most ergodic stationary so-

lutions of Eq. (3) correspond to connectivity matrices H,
taken from the Gaussian orthogonal ensemble [29]. These
solutions will spread over the entire system, of size N.

However, this does not mean �ref
N ¼ N, since c ð�Þ

n might
have some (oscillatory) structure. We therefore assume that

�ref
N ð�Þ ¼ N�ð�Þ where 1=3 � �ð�Þ � 1: (8)

The lower value of �ð�Þ is achieved in the limit of � ! 0,
where h�ref

N i ¼ N=3 [23,29]. The fact that h�ref
N i is 3 times

less than the system size is due to Gaussian fluctuations in
the components c n. The other limiting case of � ! 1
corresponds to � ¼ 1. Indeed, strong nonlinearity favors a
completely uniform jc nj2 (again, for fixed and moderate
!). The following argument, similar in spirit to the ‘‘maxi-
mum entropy’’ ansatz, can provide some understanding.

Let us denote the components c ð�Þ
n of a stationary solution

by a random variable x. Assume that the variable x follows
a distribution P ðxÞ, ‘‘as random as possible’’ but with the
constraint N ¼ R

dxx2P ðxÞ ¼ 1=N dictated by normal-
ization of the wave function. For � ¼ 0, it was shown that
the ‘‘most random’’ distribution is the Gaussian. It can be
found by maximizing the entropy S ¼ �R

dxP ðxÞ lnP ðxÞ
with the above constraint [30]. For � � 0, one however has
also to consider the increase of interaction energy Eint. The
entropy favors a distribution P ðxÞ, ‘‘as random as pos-
sible’’ for the values of x at various sites; e.g., the distri-
bution of the ‘‘weight’’ when all of the probability is on a
single site is as likely as the configuration with equal values
of all the sites. The energy however favors a uniform
distribution—clearly, a ‘‘single site weight’’ will require
huge energy. Thus, the correct quantity to minimize is the
‘‘free energy’’ functional F½P � ¼ �Sþ Eint þ �N . We
get

P ðxÞ ¼ C exp½��x2 � ð1=2Þ�x4�; (9)

where C and � are defined from the constraintsN ¼ 1=N
and

R
P ðxÞdx ¼ 1. For � ¼ 0 the Gaussian distribution is

recovered, whereas for � ! 1 the distribution turns �-like

around x ¼ 1=
ffiffiffiffi
N

p
.

One-parameter scaling ansatz.—We are now equipped
to formulate a scaling theory for the stationary solutions of
Eq. (3). The scaling ansatz of Eq. (1) is equivalent to
postulating the existence of a function fðxÞ such that [31]

h�Nð�Þi
h�ref

N ð�Þi ¼ fðxÞ where x ¼ ��

h�ref
N ð�Þi : (10)

In the delocalized limit x 
 1, the function fðxÞ ap-
proaches the saturation value 1. On the other hand, when
N ! 1 (i.e., x  1) we have that h�Nð�Þi ! ��; thus

fðxÞ ¼ x. We have numerically tested Eq. (10) for the
DNLSE using a BRM ensemble for the connectivity matrix
H. Various values of N and b in the ranges 50 � N � 800
and 1 � b � N=2 were used in the analysis. The numeri-
cal data are reported in Fig. 3, confirming nicely the scaling
ansatz of Eq. (10). Finally, it is reassuring that Eq. (10) in
the limit � ¼ 0 recovers the scaling relation found for
linear disordered lattices [23–25].
It is clear that ‘‘strong’’ discrete breathers localized at

few sites are excluded from our above considerations. In
fact, such solutions correspond to large frequency values
!� �, which for very large � are always outside any fixed
small frequency window over which our scaling analysis is
performed. The analysis of discrete breathers can be done
separately, since they originate from the clean system with
large � and !, in which disorder has only a minor effect.
Thus, all lengths appearing in Eq. (10) are (by their defi-
nition) approximately the same, i.e., �ref

N � �Nð�Þ � ��,

on the order of the lattice spacing. This is a rather trivial
limit, where Eq. (10) is again expected to be approximately
valid.
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FIG. 2 (color online). (a) The participation number �Nð�Þ vs
the system size N for various nonlinearity strengths: � ¼ 0 (�),
� ¼ 0:1 (4 ), � ¼ 1 (e), � ¼ 10 (5 ), � ¼ 50 (h), � ¼ 100
(x). The asymptotic localization length �� is evaluated by a

direct fit of the saturation value of �Nð�Þ in the limit N ! 1.
(b) The extracted �� versus the nonlinearity strength �. The

black dashed line has slope 0.5 and is drawn in order to guide the
eye. The lighter (red) dashed line is the best fitting curve Eq. (7).
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Conclusions.—We presented a one-parameter scaling
theory for the average participation number of the sta-
tionary solutions of low-dimensional disordered nonlinear
systems described by the DNLSE. Via numerical analysis
and theoretical considerations, we have established Eq. (1)
which allows us to conclude that changing disorder
strength, nonlinearity, and frequency, in the way described
by Eq. (10), would not change the (average) spatial extent
of the stationary states of the DNLSE. The one-parameter
scaling theory presented here is a powerful approach in the
quest of understanding the interplay between nonlinearity
and disorder. Although the focus of this Letter was on the
structure of stationary modes, our approach can further be
used to understand various other observables [32].
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Upper inset: The same data as in the main panel, reported using
the scaling variables h�Ni=N and �0=N. Lower Inset: The
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