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We measure elastomechanical spectra for a family of thin shells. We show that these spectra can be

described by a ‘‘semiclassical’’ trace formula comprising periodic orbits on geodesics, with the periods of

these orbits consistent with those extracted from experiment. The influence of periodic orbits on spectra in

the case of two-dimensional curved geometries is thereby demonstrated, where the parameter correspond-

ing to Planck’s constant in quantum systems involves the wave number and the curvature radius. We use

these findings to explain the marked clustering of levels when the shell is hemispherical.
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When studying spectra of quantum systems, semiclas-
sics, in particular, periodic orbit theory, provides a power-
ful connection to the dynamics of the analogous classical
system [1–4]. Considerable progress was recently made in
understanding generic statistical properties of quantum
chaotic systems [5]. Furthermore, spectra of specific sys-
tems can be constructed from periodic orbits, prominent
examples are the hydrogen atom in a strong magnetic field
[6], the helium atom [7], as well as regular and chaotic two-
dimensional billiards [2,3]. Microwave experiments in flat
cavities [8] are most useful because, in two dimensions, the
Helmholtz equation for the electrical field formally coin-
cides with the Schrödinger equation.

Do the concepts of quantum chaos carry over to other
wave phenomena?—Elasticity, i.e., mechanical vibrations,
is a particularly interesting testing ground. The governing
equations and the boundary conditions are different from
the ones in quantummechanics. Moreover, different modes
(pressure and shear) are present and propagate with differ-
ent velocities, in case of anisotropy even depending on the
directions. Hence, a transfer of quantum chaos ideas to
elastic systems is a worthwhile endeavor in its own right.
The bulk waves in three-dimensional aluminum blocks
have the same statistical features as known for quantum
chaotic systems [9]. Remarkably, even much more subtle
features have been measured and understood in a frame-
work transferred from quantum chaos: parametric statistics
[10], transport and localization properties in three-
dimensional blocks [11], the statistics of elastic displace-
ments, i.e., ‘‘wave functions,’’ in two-dimensional plates
[12], and Wannier-Stark ladders in quasi-one-dimensional
elastic systems [13].

In this contribution, we measure spectra of thin elastic
shells and explain certain characteristics by periodic orbits.
This is, to the best of our knowledge, the first experimental
identification of periodic orbit features on curved shells.
We have two goals. First, we show that periodic orbit
theory can be applied to the shells. This is nontrivial

because of the curvature and because the modes are a
combination of flexural and in-plane fields. They are in
general described by a system of partial differential equa-
tions of high order [14], very different from the
Schrödinger equation which is the starting point in quan-
tum chaos. Second, we will use this insight to explain a
striking clustering effect in the spectra. These findings are
not only of conceptual but also of practical importance.
Metallic shells are ubiquitous in technology and everyday
life, ranging from auto bodies to microelectro mechanical
systems. Since the calculation of spectral features from the
wave equation is often tremendously complicated, an
understanding in terms of simpler geometric quantities,
the periodic orbits, might be of considerable interest.
The shells we employ are objects of revolution as shown

in Fig. 1. They form a family of constant midsurface area
parametrized by the opening angle �0 measured from the
axis of revolution, whereas R is the �0 dependent curva-
ture. For �0 ¼ �=2, we have a hemisphere, the angle �0 ¼
0 formally corresponds to the planar disk. Figure 2 displays
the aluminum shells used in the experiment, the opening
angles are �0 ¼ 0�, 25�, 52�, and 90�. Each shell is 2 mm
thick although for the hemisphere three thicknesses were
studied. The disk has a diameter of 80 mm, the other shells
were made in such a way that all midsurface areas are
equal. The shells were carved from a solid aluminum block
to avoid any internal strain which inevitably occurs when
producing curved objects by bending a plate. Care was
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FIG. 1 (color online). Shells of revolution with opening angle
�0 and curvature radius R.
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taken to cut the conical boundary along the radius R as
shown in Fig. 1. This important detail prevents coupling
between flexural and in-plane modes.

We used the experimental setup developed in our pre-
vious studies [10,12]. It has a very high resolution, the
quality factor Q ¼ f=�f is typically about 105 where f
and �f are position and width in the frequency of a given
resonance, respectively. We accumulated data in the fre-
quency range 0 kHz � f � 800 kHz. In the measurement,
the shells are only supported by three 1 mm ruby spheres
which minimize the elastic coupling to the rest of the setup.
The acoustic coupling to the air is significantly reduced by
putting the setup into a vacuum chamber whose inside is
held at 10�3 Torr. Flexural (bending) modes and in-plane
(stretching and shearing) modes are excited. The resulting
spectra are displayed in Fig. 3. A visual inspection imme-
diately reveals that the spectra for the disk and the shells
with opening angle �0 <�=2 look rather similar. For the
hemisphere with �0 ¼ �=2, however, the levels are struc-
tured in clusters which are almost equally spaced. The
clustering was already found in Ref. [15] by numerically
solving the equations for thin shells [14]. In the following,
we will use periodic orbits to give a clear and intuitive
explanation of this striking effect.

Our reasoning will be in the spirit of semiclassical
analysis for quantum systems. We demonstrate that the
in-plane excitations can be described by a sum over peri-
odic orbits, i.e., by a trace formula akin to the ones in
quantum chaos [1–4]. This goes well beyond previous
work on the celebrated whispering gallery modes [2], on
the ray description of seismic waves [16] as well as on the
identification of periodic orbits in elastic spectra of three-
dimensional systems [10,17]. Trace formulas are different
for regular and chaotic systems. If the wave equation
describing shell vibrations were scalar, all our shells would
be integrable. The complexity of the wave equation for thin
shells [14] modifies that picture. The wave equation can be
separated into an angular part depending on the angle of
revolution and a ‘‘radial’’ part depending on the angle �
measured from the axis of revolution with 0 � � � �0. In
the ‘‘semiclassical’’ approximation [18] the waves are
approximated by the motion of a fictitious particle. The
main insight is that this motion takes place on the geo-
desics of the shells as in Fig. 4. The role of Planck’s
constant compared to a typical action is here played by
1=kR, where k is the wave number. To leading order, the
flexural and the in-plane motion decouple, i.e., yield two
separate equations of motion for the fictitious particle.
Hence, the flexural motion is integrable. There are 2 de-
grees of freedom on the shells and 2 constants of motion,
the energy and the angular momentum with respect to the
axis of revolution. The in-plane motion, however, has two
polarizations, one longitudinal (L, pressure) and one trans-
verse (T, shear) mode. They are always coupled upon
reflections at the boundary. In this sense, the in-plane
motion is not integrable.
The measured spectrum in Fig. 3 lowest plot shows

evidence of eigenvalue clusters which are separated by a
slowly increasing spacing in frequency. The first clusters
appear only after a gap. At medium to high frequencies the
spacing appears constant and for thin hemispheres agrees
well with the spacing coming from purely T-polarized
orbits. Furthermore, the extracted discrete spectrum shows
fluctuations well described by certain time periods, see
Fig. 5, corresponding to fixed spacings in frequency which
we attribute to periodic orbits in the following. From shell

FIG. 2 (color online). Aluminum shells used in the experi-
ment. From left to right, the opening angle is �0 ¼ 0�, 25�,
52�, and 90�.

FIG. 3. Measured spectra for the shells
with opening angles �0 ¼ 0�, 25�, 52�,
and 90� from top to bottom.
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theory, we therefore focus on the in-plane deformation
field for which dispersion is linear and results in orbit
actions linear in frequency. We shall also touch briefly on
the flexural mode as its dispersion approaches linear at the
higher frequencies probed in our experiment.

The in-plane theory results from ignoring the flexural
motion in the Kirchoff-Love shell theory [14,15] and leads
to

E

2
½ð1þ �Þ�uþ ð1� �Þrr � u� þ �!2u ¼ 0 (1)

when dropping curvature terms in the ray limit. The con-
stants E and � are the elastic modulus of extension and the
ratio of Poisson corresponding to the plane stress approxi-
mation used in plates [14]. Up to further curvature terms,
this curved version of Navier-Cauchy’s elastic equation is
rewritten by reexpressing the covariant vector Laplacian
rara in terms of two-dimensional curls and a gradient on
a divergence [19]. Consequently, the elastic field can be
decomposed in a gradient field and a curl field correspond-

ing to longitudinal and transverse polarization each satis-
fying a curved scalar Helmholtz equation:

ð�þ z2j ÞuðjÞ ¼ 0 (2)

with j ¼ L, T a polarization index in the following and
zj ¼ kjR dimensionless wave numbers obeying zT ¼ �zL
with � ¼ cL=cT the ratio of propagation speeds in plates.
On the sphere, deformations are therefore expanded using
Legendre functions fP;Qgmn ðcos�Þ expðim�Þ with n ¼ lj a

polarization dependent angular momentum obeying z2j ¼
ljðlj þ 1Þ. We impose free boundary conditions: the inte-

grated stress tensor across the thickness of the shell van-
ishes at a boundary. Thus, the normal components of the

stress resultant vanishes: N�̂a ¼ 0 at � ¼ �=2 with a ¼ �̂,

�̂ [14]. The spectrum is then found by a two-by-two
determinantal condition.
As in the scalar problem [18] we use the method of

scattering quantization [20] and consider the dynamics of a
ray of polarization j in the angular momentum variable lj
evolving under the condition that Lz is constant. By ele-
mentary calculations we find this conservation law to be
equivalent to the laws of reflection and refraction for the
ray. For the derivation of a trace formula we therefore sum
over m � Lz ¼ lL sin� with � the incidence angle with
respect to the normal. Except for the increase in complex-
ity, we find a very similar result as in [18]: there is a
scattering matrix composed of a propagation part and a
reflection-refraction part.
The propagation part over a single great arc of the

hemisphere is found to be expð�i�ljÞ with lj � zj þ 1=2

with the 1=2 related to the caustic phase shift. The free
propagation over the sphere is then independent of m and
no saddle point integration is needed as in the case of an
opening angle different from �=2.
The total m dependence resides only in the reflection

coefficients �q used for constructing an orbit q. For large l

each reflection coefficient is asymptotic to the classical
reflection coefficient and a slowly varying function of m,
so the sum over m is well approximated by an integral and
yields

tr�q �
Z lL

�lL

dm�q

�
m

lL

�
¼ lL

Z �=2

��=2
d� cos��qð�Þ

� lLAq: (3)

The final result of our calculations is that the oscillating
number of states d ~N in a frequency interval df coming
from orbits is given to leading order as

d ~N ¼ ~�IPðfÞdf � lL
X
pr

Ar
p cosð�rlpÞdlp; (4)

where pr is a closed orbit containing an r0th repeat of a
prime ray sequence p and lp ¼ nLlL þ nTlT with nL, nT
integers. We find it useful to group orbits with identical
actions such as ðLTÞ2 and LLTT and denote the family
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FIG. 5 (color online). Time spectrum of spectral fluctuations
containing longitudinal, transverse (a) and flexural segments of
orbits (b) at thickness 1 mm.

FIG. 4 (color online). Geodesic pentagram and diameters on
the spherical cap.
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L2T2. In practice �A for each family is calculated numeri-
cally. Notably, fluctuations grow linearly with frequency to
leading order. Rayleigh edge orbits are omitted as their
contribution is of order f0 only.

For completeness we include transverse rays with inci-
dence angles beyond the critical angle for conversion for
which the reflection coefficient is of unit modulus.
Consequently, this part of phase space for T-polarized
orbits leads to clusters of closely grouped states [21].
Reference [21] states that (4) should hold in general;
here for the first time we present an explicit study in a
ray splitting case. We give a parallel treatment to the
flexural orbits using their corresponding reflection coeffi-
cients [22] and dispersion relation [23]. Here we settle for
one extracted from the numerical solution of a whole
spherical shell due to its larger spectral range.

The simulated spectral fluctuations of the hemisphere
used in our experiment have a period spectrum depicted in
Fig. 5: the (a) spectrum shows clear evidence of in-plane
orbits. The inclusion of the flexural modes in (b) gives
trains of peaks with the main peaks close to those of the
transverse. This is because at higher frequencies the flexu-
ral dispersion approaches the linear with the flexural speed
approaching the Rayleigh speed which is just below the
transverse speed. Furthermore, the clusters in the trans-
ducer signal we checked to agree well with the peaks in the
flexural fluctuations.

Why is the spectrum for the hemisphere so different?
This is illustrated in Fig. 4. For all opening angles, all
periodic orbits are geodesic polygons, Fig. 4 (left) shows
the pentagram as an example. As the opening angle in-
creases, the surface enclosed by the polygons becomes
larger. At �0 ¼ 90�, this surface is the entire hemi-
sphere. Hence all polygons degenerate to the orbit on the
base of the hemisphere. The diameter orbit shown in
Fig. 4 (right) is the exception: there is only one such orbit
for �0 < 90�, because it must go through the north pole. At
�0 ¼ 90�, however, all geodesic lines connecting opposite
points on the base are diameter orbits. These drastic
changes in the periodic orbit structure reflect the equally
drastic changes in the spectrum when the opening angle
reaches 90�. Formula (4) gives the precise mathematical
connection.

In conclusion, we measured high-resolution spectra of a
family of open spherical shells and saw clear evidence of
in-plane behavior. For this we developed a trace formula
for the density of states which agree well with experiment.
The amplitudes of the fluctuations were not entirely as in
experiment, still the location of the periods of the experi-
mental fluctuations agreed well with theory. Hence, we
have presented a first identification of periodic orbit struc-
tures on curved geometries. From the simple form of the
trace formula we expect it to be easy to generalize and
apply to other wave equations on the hemisphere. Thus,
when applied to the flexural mode, also the clusters of the
transducer signal are described.
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[8] H. J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215
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