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We construct a low-energy effective theory describing non-Abelian vortices in the color superconduct-

ing quark matter under stress. We demonstrate that all the vortices are radically unstable against decay into

the only one type of vortices due to the potential term induced by the explicit flavor symmetry breaking by

the strange quark mass. A simple analytical estimate for the lifetime of unstable vortices is provided under

the controlled weak-coupling calculations. We briefly discuss the (non)existence of magnetic monopoles

at high density.
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Introduction.—Topological or quantized vortices com-
monly arise in a wide area of physics from condensed
matter physics and cosmology to particle physics [1]. In
the context of nuclear physics, the dynamical breaking of
Uð1ÞB baryon number due to the neutron superfluidity in
nuclear matter gives rise to topologically stable vortices
characterized by the first homotopy group �1½Uð1ÞB� ¼ Z.
They are phenomenologically important since the sudden
increase of the rotation of neutron stars, the so-called
glitches, may be attributed to the unpinning of vortices
which releases an angular momentum transfer from the
nuclear ‘‘mantle’’ to the outer crust [2]. Topological super-
fluid vortices also emerge in the color superconducting
quark matter [3] presumably existing in the ‘‘core’’ of
neutron stars: the Uð1ÞB symmetry is broken by the con-
densation of diquark pairs in the color-flavor locked (CFL)
phase [4] which is indeed shown to be the most stable
ground state at asymptotic high density in quantum chro-
modynamics (QCD). Recently, however, it has been found
that minimal topological vortices in quark matter are not
Uð1ÞB vortices [5] but non-Abelian vortices [6] referred to
as the semisuperfluid vortices [7], which have only wind-
ing number 1=3 inside Uð1ÞB. Actually it is energetically
favorable for a single Uð1ÞB vortex to split into three (red,
green, and blue) non-Abelian vortices. At first glance, one
may expect that all the resultant three non-Abelian vortices
are stable.

In this Letter, we show that these remaining non-Abelian
vortices are still unstable against decay into the only one
type of stable vortices when the effect of nonzero strange
quark mass ms is taken into account. In order to elucidate
the (in)stabilities of non-Abelian vortices in a model-
independent manner, we use the Ginzburg-Landau (GL)
approach near the transition temperature Tc, and construct
the low-energy effective theory of vortices with the poten-
tial term induced by the explicit breaking of flavor sym-
metry. Owing to the asymptotic freedom of QCD, all the
calculations throughout this Letter are under theoretical

control at high density regime where the QCD coupling
constant is weak. We remark that the existence of non-
Abelian vortices by itself does not rely on the domain of
applicability of the GL Lagrangian, but only on the dy-
namical symmetry breaking induced by the diquark con-
densation. On the other hand, the symmetry argument is
not enough to ensure their stabilities which depend on the
details of the dynamics. In the following, we neglect the
effect of Uð1ÞEM electromagnetism since the mixing be-
tween broken SUð3ÞC color and Uð1ÞEM is sufficiently
small at high density. The generalization to include the
effect is straightforward.
Ginzburg-Landau Lagrangian.—We consider the di-

quark pairing in the most attractive CFL and spin-parity

0þ channel [4]: ð�LÞia � �abc�ijkhðqLÞjbCðqLÞkci and

ð�RÞia � �abc�ijkhðqRÞjbCðqRÞkci, where i, j, k (a, b, c) are

flavor (color) indices and C is the charge conjugation
operator. Here we take�L ¼ ��R ¼ � so that the ground
state is the positive parity state.
The time-dependent Ginzburg-Landau (TDGL)

Lagrangian up to the second order in time and space
derivatives [8] at large quark chemical potential � �
ms � mu;d ’ 0 near Tc is given by [9,10]:

LGL ¼ TrðK0D0�
yD0�� K3Di�

yDi�Þ
þ TrðKD�

yD0�þ H:c:Þ � 1

4
F��F

�� � VGL;

VGL ¼ Tr

�
�y

��
�þ 2�

3

�
13 þ �X3

�
�

�
þ �1½Trð�y�Þ�2 þ �2Tr½ð�y�Þ2�; (1)

where D�� ¼ @��� igsA��, F�� ¼ @�A� � @�A� �
igs½A�; A��, and X3 ¼ 1

2 diagð0; 1;�1Þ. KD is a dissipative

term reflecting the decay of Cooper pairs into fermionic
excitations. The � terms originate from a Fermi surface
splitting due to the nonzero strange quark mass together
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with the constraints of electric and color charge neutrality
and weak interaction equilibration [10].

The GL parameters K0;3, �, �1;2, and � are obtained

from the weak-coupling calculations [9,10]:

�¼4Nð�ÞlogT
Tc

; �1;2¼ 7�ð3Þ
8ð�TcÞ2

Nð�Þ��;

K3¼1

3
K0¼ 7�ð3Þ

12ð�TcÞ2
Nð�Þ; �¼Nð�Þm

2
s

�2
log

�

Tc

;

(2)

where Nð�Þ ¼ �2=ð2�2Þ is the density of state at the

Fermi surface and Tc ¼ 21=3e��=� is the critical tempera-
ture of the CFL phase in the absence ofms.K0 andKD have
not been calculated in the literature, but can be derived
following the same procedure of Ref. [11].

The ground state of the GL potential is given by � ¼
½ð� �

8� � �
12�Þ13 � �

2�X3�1=2 � diagð�1;�2;�3Þ where the

gap parameters �1, �2, and �3 denote down-strange,
strange-up, and up-down Cooper pairs, respectively. Due
to the gap ordering,�3 > �1 > �2, the symmetry breaking
pattern is [10]

SU ð3ÞC � SUð3ÞL;R � Uð1ÞB !� SUð3ÞCþF !ms
Uð1Þ2V:

(3)

For clarity and completeness, we will first neglect the �X3

term and later treat it as a perturbation. Without the �X3

term, the order parameter is given by � ¼ ��13 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �

8� � �
12�

q
13.

Mass spectra around this ground state are

m2
G ¼ 2g2s ��

2K3; m2
1 ¼� 2

K3

�
�þ 2�

3

�
; m2

8 ¼
4� ��2

K3

;

(4)

where mG is the mass of the gluons, m1 and m8 are the
masses of quarks in the 3 � �3 ¼ 1 � 8 representation under
the unbroken SUð3ÞCþF symmetry, respectively. From

Eqs. (2) and (4), we have mG � gs� and m1 ’ 2m8 � ��;

then, the relation gs� � �� at high density indicates that
the CFL phase is a type-I superconductor [12]. Note that
non-Abelian vortices can appear even in this type-I system,
since their interactions are repulsive at large distances due
to the exchange of the Nambu-Goldstone (NG) boson
associated with the Uð1ÞB symmetry breaking [13]. This
is in contrast to the case of the metallic (Abelian) super-
conductor where vortices can exist only in a type-II system.
Non-Abelian vortices are rather superfluid vortices; they
are created under a rapid rotation.

Profiles of non-Abelian vortices.—Corresponding to the
three types of vortices, the order parameter � asymptoti-
cally behaves as

� ���!r!0

8<
:
diagð0;	;	Þ
diagð	;0;	Þ
diagð	;	;0Þ

; � ���!r!1
8<
:
diagðei	�1;�2;�3Þ
diagð�1; e

i	�2;�3Þ
diagð�1;�2; e

i	�3Þ

where (r, 	) is the polar coordinate and ‘‘	’’ stand for some
nonzero constants. All the above three asymptotic forms at

infinity can be brought into a unique form � ���!r!1
ei	=3

diagð�1;�2;�3Þ by regular SUð3ÞC gauge transformations

[13]. The overall phase ei	=3 manifestly shows that the non-
Abelian vortex winds 2�=3 inside Uð1ÞB. Their tensions
logarithmically diverge as T ’ 2� ��2

3 logL
r0
þOð1Þ where L

is a long-distance cutoff and r0 is a short-distance cutoff.
Let us take a diagonal ansatz for a single vortex

� ¼ ��ei	½ð1=
ffiffi
3

p ÞT0�
ffiffiffiffiffiffi
2=3

p
ð�3T3þ�8T8Þ�

�
�
FðrÞffiffiffi
3

p T0 �
ffiffiffi
2

3

s
GðrÞð�3T3 þ �8T8Þ

�
; (5)

Ai ¼ 1

gs

�ijx
j

r2
½1� hðrÞ�

ffiffiffi
2

3

s
ð�3T3 þ �8T8Þ; (6)

with T0 ¼ 1ffiffi
3

p diagð1; 1; 1Þ, T3 ¼ 1ffiffi
2

p diagð0; 1;�1Þ, and

T8 ¼ 1ffiffi
6

p diagð�2; 1; 1Þ. We impose ðF;G; hÞ ! ð3; 0; 0Þ as
r ! 1 to satisfy � ! ��13. The single-valuedness condi-

tion for � requires ð�3; �8Þ ¼ ð0; 1Þ, (

ffiffi
3

p
2 , � 1

2 ).

In the presence of each vortex, the remaining SUð3ÞCþF

symmetry is further broken down to ½Uð1Þ � SUð2Þ�CþF.
Hence, the vortex solution is labeled by the NG modes (or
the orientational modes) living on the coset space
SUð3ÞCþF=½Uð1Þ � SUð2Þ�CþF ’ CP2, which we parame-
trize by introducing 
 ¼ ð
1; 
2; 
3ÞT (
y
 ¼ 1, 
�
ei�
) defined as U½

ffiffi
2
3

q
ð�3T3 þ �8T8Þ�Uy � 

y � 1

3 13.

The most general solution can be obtained by acting U 2
SUð3ÞCþF as � ! U�Uy and Ai ! UAiU

y:

� ¼ ��eði	Þ=3
�
FðrÞffiffiffi
3

p T0 þGðrÞ
�


y � 1

3
13

��
; (7)

Ai ¼ 1

gs

�ijx
j

r2
hðrÞ

�


y � 1

3
13

�
: (8)

For concreteness, let us choose ð�3; �8Þ ¼ ð0; 1Þ as a
reference solution. Equations of motion for the profile
functions read [14]:

f00 þ f0

r
� ð2hþ 1Þ2

9r2
f�m2

1

6
fðf2 þ 2g2 � 3Þ

�m2
8

3
fðf2 � g2Þ ¼ 0; (9a)

g00 þ g0

r
� ðh� 1Þ2

9r2
g�m2

1

6
gðf2 þ 2g2 � 3Þ

þm2
8

6
gðf2 � g2Þ ¼ 0; (9b)

h00 � h0

r
�m2

G

3
½g2ðh� 1Þ þ f2ð2hþ 1Þ� ¼ 0; (9c)

with f � 1
3 ðFþ 2GÞ and g � 1

3 ðF�GÞ. These equations

are solved with the boundary conditions, ðf; g; hÞ !
ð1; 1; 0Þ as r ! 1 and ðf; g0; hÞ ! ð0; 0; 1Þ as r ! 0.
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Low-energy effective theory.—The NG modes
 2 CP2

propagate along the non-Abelian vortex string. The phi-
losophy of constructing the low-energy effective
Lagrangian is similar to that of the chiral perturbation
theory (ChPT) describing the low-energy dynamics of
QCD. Remembering that the ChPT is constrained by the
½SUðNfÞL � SUðNfÞR�=SUðNfÞ symmetry, the form of the

Lagrangian in our case is determined solely by the
SUð3Þ=½Uð1Þ � SUð2Þ� symmetry, and is described by the
CP2 nonlinear sigma model [15]:

L CP2 ¼ C
X

�¼0;3

K�½@�
y@�
þ ð
y@�
Þð
y@�
Þ�;

(10)

where
 is promoted to a dynamical field as
 ! 
ðx0; x3Þ
depending on the vortex world-sheet coordinates x0 and x3.
K� are the stiffness parameters in Eq. (1) and we have only
one unknown constant C. Note that the KD term in Eq. (1)
gives no contribution to Eq. (10) since it is traceless in the
vortex background solutions [15].

In order to determine the constant C, we have to go back
to the original GL Lagrangian (1) and we have to know the

 dependences of � and A�. It is easy for � and Ai¼1;2

because we have already solved background vortex solu-
tions as �ðx1;2;
ðx0;3ÞÞ and A1;2ðx1;2;
ðx0;3ÞÞ. The miss-

ing part is A0;3ð
ðx0;3ÞÞ which vanishes in the background

solutions. Therefore we make an ansatz in an appropriate

gauge following Ref. [16]: A�ðx1;2;
ðx0;3ÞÞ ¼ i�ðrÞ
gs

�
½

y; @�ð

yÞ� ð� ¼ 0; 3Þ where �ðrÞ is an unknown
function. Then we finally arrive at

C ¼ 4�

g2s

Z
dr

r

2

�
m2

G

�
ð1� �Þðf� gÞ2 þ �2

2
ðf2 þ g2Þ

�

þ ð1� �Þ2h2
r2

þ �02
�
; (11)

where � should be determined so that the integral (11) is
minimized. Using the Euler-Lagrange equation for �,

�00 þ �0
r þ ð1� �Þ h2

r2
� m2

G

2 ½ðf2 þ g2Þ�� ðf� gÞ2� ¼ 0,

one finds that C is indeed finite and
 is normalizable [14].
Unstable non-Abelian vortices.—We now turn on the

�X3 term and consider the regime � � �, which allows
for an analytical treatment. Since this term explicitly
breaks SUð3ÞCþF symmetry, the NG modes in Eq. (10)
are lifted via an effective potential over the CP2 space. Let
us consider a single vortex whose field configuration sat-
isfies Eq. (9). Variations of its tension can be thought of as
the potential

VCP2 ¼ �
Z

d2xTr½�yX3�� ¼ Dðj
3j2 � j
2j2Þ; (12)

where we have used j
1j2 þ j
2j2 þ j
3j2 ¼ 1 and have
defined

D ¼ �� ��2
Z 1

0
dr rðg2 � f2Þ: (13)

Note that D is positive and finite because g� f is always
positive and gets exponentially small as going away from
the vortex [14]; thus, the effective potential is well-defined.
The effective potential in CP2 space is shown in Fig. 1.

Since the potential has one minimum at ð
1; 
2; 
3Þ ¼
ð0; 1; 0Þ, any vortices away from (0, 1, 0) are unstable
against decay into the (0, 1, 0) vortex. This matches the
fact that the pairing gap �2 is smaller than �1 and �3 so
that the vortex whose string tension is proportional to �2 is
easier to be created than others; the details of the dynamics
even suggest that the (1, 0, 0) and (0, 0, 1) vortices are no
longer local minima.
Let us estimate the lifetime of unstable vortices. As an

example, we consider the decay from the (1, 0, 0) vortex at
the left-bottom corner of Fig. 1 to the (0, 1, 0) vortex at the
right-bottom corner. The discussion here holds for the (0, 0,
1) vortex. In what follows, we set 
3 ¼ 0, implying that
we will consider a CP1 submanifold (corresponding to the
bottom edge of Fig. 1) inside CP2. It is useful to introduce

an inhomogeneous coordinate uðtÞ 2 CP1 by ð
1; 
2Þ ¼
ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ juj2p
; u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2p Þ. Then the low-energy effective

Lagrangian can be rewritten as

L CP1 ¼ CK0

j _uj2
ð1þ juj2Þ2 þD

juj2
1þ juj2 : (14)

A typical time scale of this equation is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CK0=D

p
.

In principle, we can numerically calculate � for each �.
Here we provide a simple analytical estimate instead. Since
the profile function f (g, h, and �) increases (decrease)

with a typical scale r� ���1 for mG � m1;8 [14], we find

C� ð�= ��Þ2 from Eq. (11). Furthermore, D is estimated

from Eq. (13) as D� ��m2
s logð�= ��Þ. Therefore the

lifetime of unstable vortices is given by

��m�1
s ð�= ��Þ; ðxÞ � x2ðlogxÞ�1=2: (15)

In the limit ms ! 0, � ! 1 as anticipated.
(Non)existence of magnetic monopoles.—Let us discuss

the (non)existence of magnetic monopoles in QCD at high
density. One may expect that the symmetry breaking pat-
tern (3) would support the magnetic monopoles character-
ized by �2½SUð3Þ=Uð1Þ2� ¼ Z2. If so, monopoles must be
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FIG. 1 (color online). Contour plot of the effective potential
for the CP2 NG modes in the j
2j2-j
3j2 plane. The color
represents the height of the potential.
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confined due to the color Meissner effect of the color
superconductivity because it is in the Higgs phase. In
fact, such a confined monopole exists in theN ¼ 2 super-
symmetric QCD in the Higgs phase with the same sym-
metry breaking pattern (3) [17], where magnetic fluxes are
squeezed into vortex strings confining the monopole from
both sides. This composite object has been understood as a
kink in the low-energy effective world-sheet theory on the
vortex string with a suitable potential term admitting more
than or equal to two minima. If the low-energy theory (10)
in our case had a potential similar to supersymmetric QCD,
this would realize the dual of the confinement scenario
advocated in the QCD vacuum where monopoles are con-
densed and quarks are confined [18]. However, this is not
the case. The potential (12) has only one minimum and
allows no kink solutions but implies the instabilities of
non-Abelian vortices instead, as we have seen.

One should note that this conclusion may not be valid if
one includes the nonperturbative quantum effects which
account for the mass gap of NG modes as indicated by the
Coleman-Mermin-Wagner theorem in two dimensions.
Actually, such effects may lead to multiple local minima
in the potential, and thus, the monopole-antimonopole
meson attached to the vortex [16,19]. In the original
four-dimensional GL theory at sufficiently high density,
instanton effects are highly suppressed due to the screening
of instantons together with the asymptotic freedom of QCD
[20], and another mechanism responsible for the quantum
effects should be present. We will defer this issue to a
future work.

Discussion.—It is interesting to investigate possible as-
trophysical implications of our results. When the core of a
neutron star cools down below the critical temperature of
the CFL phase, a network of non-Abelian vortices will be
formed by the Kibble mechanism. Remarkably, the ex-
trapolation of our formula (15) to the intermediate density
regime relevant to the core of neutron stars (��
500 MeV) with�� 10 MeV andms ’ 150 MeV suggests
that all the vortices decay radically with the lifetime of
order �� 10�21 second. Although this result should be
taken with some care due to the uncertainty of numerical
factor in Eq. (15), it is reasonable to expect that only one
type of non-Abelian vortices, which correspond to the
point (0, 1, 0) in the CP2 space, survive as a response to
the rotation of neutron stars in reality. The other decaying
non-Abelian vortices will emit NG bosons, quarks, gluons,
or photons during thermal evolution of neutron stars. In
relation to the glitch phenomena, it would be also impor-
tant to understand how the Abelian Uð1ÞB vortices in
hadronic matter are connected to the stable non-Abelian
vortices in color superconducting quark matter in the in-
terior of neutron stars. This may be relevant to the question
of continuity of hadronic matter and quark matter [21,22].
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