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It has been widely believed that, except in very extreme situations, the influence of gravity on quantum

fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the

seminal results obtained over the last decades in the context of renormalization of quantum fields in

curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-

behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the

very same background spacetime, to become dominant over any classical energy-density component. By

estimating the time scale for the vacuum energy density to become dominant, and therefore for back-

reaction on the background spacetime to become important, we argue that this (infrared) vacuum

dominance may bear unexpected astrophysical and cosmological implications.
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In the absence of a full quantum gravity theory, the
influence of gravity on quantum fields can be properly
analyzed only in the semiclassical approximation, in which
matter (and other interaction) fields are quantized on clas-
sical background spacetimes. This semiclassical approach,
known as quantum field theory in curved spacetimes
(QFTCS) [1–6], gives meaningful results as long as it deals
with situations far away from the Planck scale. The
Hawking effect [7,8], according to which black holes
should emit a thermal bath of particles, provides an ex-
ample of the strength of the QFTCS formalism. However,
in spite of its conceptual importance, it has been widely
believed that except in very extreme situations (near sin-
gularities, Cauchy horizons, tiny black holes), the influence
of gravity on quantum phenomena should amount only to
small, subdominant contributions. Here we argue that this
commonly held belief is false. For the sake of simplicity,
we focus on the vacuum energy density of a free quantum
scalar field and show that on some well-behaved space-
times it can become dominant over any classical energy-
density component, even though it is bound to remain finite
everywhere. We also show, by performing a simple esti-
mate, that the natural time scale for this semiclassical
gravity effect to become important, if it is triggered, is of
tiny fractions of a second in some astrophysical contexts,
while in cosmological contexts it would be of a few billion
years.

Let us begin by considering a real, free scalar field �
with mass m satisfying the usual Klein-Gordon equation
with the additional coupling to the scalar curvature R:

ð�hþm2 þ �RÞ� ¼ 0; (1)

where � is a real constant. (We adopt natural units in which
@ ¼ c ¼ 1, unless stated otherwise.) The associated quan-

tum field �̂ is formally written as �̂ ¼ R
d�ð�Þ½â�uðþÞ

� þ
ây�uð�Þ

� �, where uðþÞ
� and uð�Þ

� � ðuðþÞ
� Þ� are positive- and

negative-norm solutions of Eq. (1), respectively, which

together form a complete set of normal modes, satisfy-

ing ðuðþÞ
� ; uðþÞ

� ÞKG ¼ �ðuð�Þ
� ; uð�Þ

� ÞKG ¼ �ð�;�Þ and

ðuðþÞ
� ; uð�Þ

� ÞKG ¼ 0, with �ð�;�Þ being the Dirac’s ‘‘delta

function’’ associated with the measure �ð�Þ on the set of
‘‘quantum numbers’’�. Recall that the Klein-Gordon inner
product defined on the space S of complex solutions of
Eq. (1) is given by ðu;vÞKG :¼ i

R
�d�n

a½u�rav�vrau
��,

where d� is the proper-volume element on the Cauchy
surface � and na is the future-pointing unit vector field

orthogonal to �. The operators â� and ây� are taken to
satisfy the canonical commutation relations (CCR)

½â�; ây�� ¼ �ð�;�Þ, ½â�; â�� ¼ 0, from where the mode-

annihilation and -creation interpretation follows, as well as
the Fock-space construction based on the ‘‘vacuum’’ state
j0i defined through â�j0i ¼ 0 for all �. Obviously, the
choice of the solutions to constitute the positive-norm

modes uðþÞ
� is far from unique, and different choices can

lead to different (i.e., unitarily inequivalent) Fock spaces of
states where the CCR is implemented. In the absence of a
timelike symmetry, with respect to which a preferred no-
tion of positive-frequency solutions can be defined, there is
no natural way of picking one space out of the infinite
possibilities. As a consequence, no natural notion of parti-
cles exists in a general curved spacetime. This, however,
poses no impediment to the formalism of QFTCS, as is
well known.
The effect we shall discuss here does not rely on this

‘‘indeterminacy’’ of the particle concept. Therefore, in
order to avoid unnecessary complications we shall assume
a globally hyperbolic spacetime which is conformally
static in both the asymptotic past and future. To be even
more conservative, we focus attention on a spacetime
which is conformally flat in the asymptotic past:

ds2 �
�
f2inð�dt2 þ d~x2Þ ; asymp: past
f2outð�dt2 þ hijdx

idxjÞ ; asymp: future
; (2)
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where fJ ¼ fJðt; ~xÞ> 0, J 2 fin; outg, are smooth func-
tions and hij ¼ hijð ~xÞ, i, j ¼ 1; 2; 3, are the components of

an arbitrary spatial metric. [We use the same labels t and
~x ¼ ðx1; x2; x3Þ for coordinates in the asymptotic past and
future only for simplicity; they are obviously defined on
nonintersecting regions of the spacetime.] In each of these

asymptotic regions the field � can be written as � ¼
~�=fJ, where ~� satisfies

� @2

@t2
~� ¼ ��J

~�þ VJ
~�; (3)

where �in is the usual (flat) Laplace operator, �out is the
Laplace operator associated with the spatial metric hij, and

the effective potential VJ is given by

VJ ¼ ð�JfJ � €fJÞ
fJ

þ f2Jðm2 þ �RÞ

¼ ð1� 6�Þ ð�JfJ � €fJÞ
fJ

þ f2Jm
2 þ �KJ; (4)

with Kin ¼ 0, Kout ¼ Koutð ~xÞ the scalar curvature associ-
ated with the spatial metric hij, and the dots denoting

differentiation with respect to the variable t.
Although Eq. (3) is already in a form upon which our

main line of reasoning could be constructed, let us simplify
our analysis further by assuming that Vin ¼ 0 and Vout does
not depend on t, Vout ¼ Voutð ~xÞ. This is certainly not the
case in general for spacetimes whose metric satisfies
Eq. (2), but there are very interesting situations which do
satisfy this condition: (i) the massless (m ¼ 0) field with
arbitrary coupling � in spacetimes which are asymptoti-
cally flat in the past and asymptotically static in the future
[fin ¼ 1 and fout ¼ foutð ~xÞ], as those describing the for-
mation of a static star from matter initially scattered
throughout space, and (ii) the massless, conformally
coupled field (m ¼ 0 and � ¼ 1=6). With this assumption
for the potential, two different sets of positive-norm

modes, uðþÞ
~k

and vðþÞ
� , can be naturally defined by the

requirement that they are the solutions of Eq. (1) which
satisfy the asymptotic conditions:

uðþÞ
~k

�past ð16�3!~kÞ�1=2f�1
in e�ið!~kt� ~k� ~xÞ (5)

and

vðþÞ
� �future ð2$�Þ�1=2f�1

oute
�i$�tF�ð ~xÞ; (6)

where ~k 2 R3, !~k
:¼k ~k k , $� > 0, and F�ð ~xÞ are solu-

tions of

½��out þ Voutð ~xÞ�F�ð ~xÞ ¼ $2
�F�ð ~xÞ (7)

satisfying the normalization

Z
�out

d3x
ffiffiffi
h

p
F�ð ~xÞ�F�ð ~xÞ ¼ �ð�;�Þ (8)

on a Cauchy surface �out in the asymptotic future. (Each
F� can be chosen to be real with no loss of generality.)

The fact that in general the modes vðþÞ
� cannot be ex-

panded in terms of uðþÞ
~k

alone (uð�Þ
~k

might be needed) is

responsible for the almost-forty-year-old effect of particle
creation due to the (change in the) gravitational back-
ground: the vacuum state j0iin associated with the modes

uðþÞ
~k
, which represents absence of particles in the asymp-

totic past, represents a particle-filled state according to the
natural notion of particles in the asymptotic future (asso-

ciated with vðþÞ
� ). This stands at the root of the Hawking

effect and of particle creation in expanding universes [1,2].
Here, however, we want to call attention to a different
effect, independent of particle creation, which seems to
have passed unnoticed in the general context: there are

reasonable situations where the modes vðþÞ
� , given in

Eq. (6), together with vð�Þ
� fail to form a complete set of

normal modes. This happens whenever the operator
½��out þ Voutð ~xÞ� in Eq. (7) happens to possess normal-
izable [i.e., satisfying Eq. (8)] eigenfunctions with negative
eigenvalues, $2

� ¼ ��2
� < 0. In this case, additional

positive-norm modes wðþÞ
� with the asymptotic behavior

wðþÞ
� �future ðe

��t�i�=12 þ e���tþi�=12ÞF�ð ~xÞffiffiffiffiffiffiffiffiffiffi
2��

p
foutðt; ~xÞ

(9)

and their complex conjugateswð�Þ
� are necessary in order to

expand an arbitrary solution of Eq. (1). As a direct con-

sequence, at least some of the in-modes uð�Þ
~k

(typically

those with low !~k) eventually undergo an exponential

growth (assuming that fout remains polynomially
bounded). This asymptotic divergence is reflected on the
unbounded increase of the vacuum fluctuations,

h�2i �future �e
2 ��t

2 ��

� �Fð ~xÞ
foutðt; ~xÞ

�
2½1þOðe��tÞ�; (10)

where �Fð ~xÞ is the eigenfunction of Eq. (7) associated with

the lowest negative eigenvalue allowed, $2
� ¼ � ��2, � is

some positive constant, and � is a dimensionless constant
(typically of order unity) whose exact value depends glob-
ally on the spacetime structure (since it crucially depends

on the projection of each uð�Þ
~k

on the mode wð�Þ
� whose

$2
� ¼ � ��2; � also depends on the initial state, here

assumed to be the vacuum j0iin).
As one would expect, these wild quantum fluctuations

give an important contribution to the vacuum energy stored
in the field. In fact, the expectation value of its energy-
momentum tensor, hT�	i, in the asymptotic future is found

to be dominated by this exponential growth:

PRL 104, 161102 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

23 APRIL 2010

161102-2



hT00i �future h�2i
�ð1� 4�Þ

2

�
��2 þ ðD �FÞ2

�F2
þm2f2 þ �K

�

þ ð1� 6�Þ
�
2� €f

f
� 2�D2f

f
þ

_f2

2f2
�

�� _f

f

þ ðDfÞ2
2f2

�DifD
i �F

f �F

�
þOðe��tÞ

�
; (11)

hT0ii �future h�2i
�
ð1� 4�Þ

��Di
�F

�F
þ ð1� 6�Þ

�
� _fDif

f2
�

_fDi
�F

f �F
�

��Dif

f

�
þOðe��tÞ

�
; (12)

hTiji �future h�2i
�
ð1� 2�ÞDi

�FDj
�F

�F2
� 2�

DiDj
�F

�F
þ � ~Rij

þ ð1� 4�Þhij
2

�
��2 � ðD �FÞ2

�F2
�m2f2 � �K

�

þ ð1� 6�Þ
�
DifDjf

f2
�DifDj

�F

f �F
�DjfDi

�F

f �F

þ hij

�
2�D2f

f
� 2� €f

f
þ

_f2

2f2
�

�� _f

f
� ðDfÞ2

2f2

þDkfD
k �F

f �F

��
þOðe��tÞ

�
; (13)

where Di is the derivative operator compatible with the
metric hij (so that �out ¼ D2), ~Rij is the associated Ricci

tensor (so that Kout ¼ hij ~Rij), and we have omitted the

subscript out in fout and Kout for simplicity. The Eqs. (11)–
(13), together with Eq. (10), imply that on time scales

determined by ���1, the vacuum fluctuations of the field
should overcome any other classical source of energy,
therefore taking control over the evolution of the back-
ground geometry through the semiclassical Einstein equa-
tions (in which hT�	i is included as a source term for the

Einstein tensor). We are then confronted with a startling
situation where the quantum fluctuations of a field, whose
energy is usually negligible in comparison with classical
energy components, are forced by the background space-
time to play a dominant role.

We are still left with the task of showing that there exist
indeed well-behaved background spacetimes in which the
operator ½��out þ Voutð ~xÞ� possesses negative eigenvalues
$2

� < 0, condition on which depends all the discussion
presented above. Experience from usual quantum mechan-
ics tells us that this typically occurs when Vout gets suffi-
ciently negative over a sufficiently large region. It is easy to
see from Eq. (4) that, except for very special geometries (as
the flat one), one can generally find appropriate values of
� 2 R which make Vout as negative as would be necessary
in order to guarantee the existence of negative eigenvalues.
Therefore, the question is not if negative eigenvalues are
possible, but how natural are the scenarios in which they

appear. For massless fields with coupling � of order unity,
Vout is of order R [see Eq. (4)], which in turn is of order
8�G
c (assuming the validity of the classical Einstein
equations), where 
c is the energy density of the classical
matter governing the spacetime evolution and G is
Newton’s constant. Note also that we can manipulate the
sign of Vout by choosing � properly (but still with values of
order 1). Combining all these observations suggests that
background geometries associated with matter distribu-
tions whose density variations are of order �
c over re-
gions of typical linear size L, satisfying 8�G�
cL

2 � 1 or
larger, are promising candidates where a massless field
with appropriate coupling � (with j�j � 1) would exhibit
the vacuum-dominance effect presented above. Recovering
units appropriate in different contexts, we have

8�G�
cL
2

c2
	

�
�
c

1015 g=cm3

��
L

7 km

�
2

	
�
�
c


m0

��
L

4:7� 103 Mpc

�
2 � 1; (14)

where 
m0 	 2:5� 10�30 g=cm3 is the matter density
(baryonic and dark) averaged over the observable
Universe, whose linear size is comparable to the Hubble
length 4:1� 103 Mpc [9].
This crude estimate serves only to suggest the scenarios

in which the vacuum-dominance effect might play some
role: compact objects [10] and cosmology. Only a thorough
analysis can properly reveal the relevance of the mecha-
nism in each of these contexts. Notwithstanding, although
the main goal of this Letter is to lay the general basis of the
mechanism, next we summarize the results of a detailed
analysis performed in the simplest (nontrivial) instance
where the vacuum dominance is found to be triggered:
the background geometry of a uniform-density,
spherically symmetric compact object [11]. In such an
idealized case, the Tolman-Oppenheimer-Volkoff equation
(which relates pressure and density inside the object) can
be analytically solved (see, e.g., Ref. [12]), from where the
background geometry [fout and hij in Eq. (2)] can be

calculated and substituted into the expression for Vout,
Eq. (4). Then, it is simply a matter of verifying (numeri-
cally) the existence of bound eigenfunctions for the opera-
tor (��out þ Vout) appearing in Eq. (7). After performing
this procedure for several values of the compact-object
mass M and radius ro, it is found that there always exist
classically stable compact-object configurations (i.e., with
M=ro < 4=9 in geometric units) which awake the vacuum
energy of massless fields with any value of � > 1=6 or � <
�0 (with �0 	 �2). Preliminary results [11] show that
more realistic compact objects (like some neutron stars)
can also trigger the effect for massless fields with appro-
priate couplings. This leads to an interesting (and rare)
possible interconnection between observational astrophys-
ics and semiclassical gravity, where the observation of
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stable neutron-star configurations may rule out the exis-
tence of certain fields in nature.

Back to the general context, the time scale ���1 (typi-

cally or order jVoutj�1=2), which determines how sharp
would be the transition from classical to vacuum domi-
nance, can be estimated as being given by L when condi-
tion (14) is verified. Therefore, for compact objects we

have ���1 � 10�4 s, while in the cosmological context
���1 � 1010 years (this latter time scale might be consid-
erably smaller since matter is not evenly distributed over
the whole observable Universe).

We conclude with some final remarks. First, it is worth
mentioning that in spite of the unbounded growth in
Eqs. (11)–(13), hT�	i is covariantly conserved: r�hT�

	 i ¼
0. In the static case [fout ¼ foutð ~xÞ], for instance, this
implies that the total vacuum energy is kept constant,
although it continuously flows from spatial regions where
its density is negative (and ever decreasing) to spatial
regions where it is positive (and ever increasing). (This is
an example of a spontaneous timelike symmetry breaking.)
Also, in the massless conformally coupled case (m ¼ 0
and � ¼ 1=6), the exponentially increasing terms give no
contribution to the anomalous value of the trace hT�

� i.
Finally, notice that the exponential behavior appearing in
Eqs. (10)–(13) leads only to asymptotic divergences;
strictly speaking, all the quantities remain finite every-
where. This is in agreement, as it should be, with the
seminal results obtained over the last decades on the topic
of renormalization in QFTCS, which in summary show that
a state (satisfying a positivity condition) which is renorma-
lizable and free from infrared divergences at a particular
time (i.e., with the only singular behavior of its two-point
function being of a Hadamard form, for points in the same
normal neighborhood of a given Cauchy surface), will
remain so throughout the spacetime; no divergences can
appear due to a well-behaved evolution of the background
spacetime [13–15]. This seminal result, whose importance
cannot be stressed enough, seems to have discouraged
further investigation on the topic of ‘‘infrared behavior of
fields in curved spacetime’’ in the general context, as if it
offered no more surprises. (For a thorough investigation in
the case of de Sitter spacetime, see Ref. [16].) The vacuum-
dominance effect presented here illustrates that this
‘‘mathematical good behavior’’ may still harbor interesting
and wild physical phenomena. In fact, it is quite natural to
expect that the infrared sector of a field theory should be
very sensitive to the nontriviality of the background ge-
ometry, giving rise to legitimate QFTCS effects. We have
made use of some idealizations (e.g., free scalar field,
conformally static asymptotic metrics) only to put in evi-
dence the main idea behind the vacuum-dominance mecha-

nism, avoiding unnecessary complications. The fact that
this mechanism already manifests itself in such a simple
and classically well-behaved situation leads us to speculate
that it might be of relevance in other, more complicated
(and possibly realistic) scenarios (for instance, during the
collapse of stars which classically would lead to the for-
mation of black holes, or in the course of structure for-
mation during cosmological expansion). Some of these
legitimate QFTCS effects may still be waiting to be
uncovered.
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