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Starting from a generalized elastic model which accounts for the stochastic motion of several physical

systems such as membranes, (semi)flexible polymers, and fluctuating interfaces among others, we derive

the fractional Langevin equation (FLE) for a probe particle in such systems, in the case of thermal initial

conditions. We show that this FLE is the only one fulfilling the fluctuation-dissipation relation within a

new family of fractional Brownian motion equations. The FLE for the time-dependent fluctuations of the

donor-acceptor distance in a protein is shown to be recovered. When the system starts from nonthermal

conditions, the corresponding FLE, which does not fulfill the fluctuation-dissipation relation, is derived.

DOI: 10.1103/PhysRevLett.104.160602 PACS numbers: 05.40.�a, 02.50.Ey

Introduction.—Continuum elastic models have been ex-
tensively used in statistical mechanics to study the dynam-
ics of real physical systems. Examples include (semi)
flexible polymers [1–3], membranes [2,4–6], growing in-
terfaces [7–11], fluctuating surfaces [12], and diffusion-
noise systems [13]. In this Letter we consider the following
Markovian equation for a generalization of the accounted
elastic models (generalized elastic model),

@

@t
hð ~x;tÞ¼

Z
ddx0�ð ~x� ~x0Þ @z

@j ~x0jzhð ~x
0;tÞþ�ð ~x;tÞ; (1)

for the dynamics of the D-dimensional stochastic process
h in the d-dimensional infinite space: the internal d coor-
dinates are represented by ~x and the Gaussian white noise
satisfies the fluctuation-dissipation (FD) relation

h�jð ~x; tÞ�kð ~x0; t0Þi ¼ 2kBT�ð ~x� ~x0Þ�jk�ðt� t0Þ: (2)

with j, k 2 ½1; D�. The Riesz fractional operator is defined
via its Fourier transform as F ~qf @z

@j ~xjzg � �j ~qjz (z > 0) [14]

or, in terms of the Laplacian �, as @z

@j ~xjz :¼ �ð��Þz=2 [15].
In the following analysis we study two classes of hydro-
dynamic interactions: long-ranged, �ð ~rÞ � j~rj�� as ~r !
1, with 0<�< d, and local, �ð ~rÞ ¼ �dð ~rÞ. In the non-
local case, if � ¼ d we take �ð~rÞ � 1

aþj~rjd where a is a

microscopic cutoff.
Long-range hydrodynamic interactions.—The hydrody-

namic interactions are often represented by the equilibrium
average of the Oseen tensor, which in an embedding
de-dimensional space (de � 3) reads [1] �ð ~rÞ � j~rj2�de .
Examples are (I) fluid membranes [2,4–6], whose height
hð ~x; tÞ of a point ~x on the two-dimensional (planar) base
surface is moving in time according to (1), with � ¼ Dþ
d� 2 ¼ 1 and z ¼ 4 as derived from the Helfrich bending
free energy for small deformations [16]. (II) Semiflexible
and flexible polymers’ models, where h represents the 3
spatial coordinates of a polymeric segment (bead), while x
is the strand’s one-dimensional internal coordinate (curvi-
linear abscissa). For semiflexible filaments [2,3] the bend-

ing elastic energy associated with the chain’s deformation
implies z ¼ 4 [17] and from the Oseen tensor formula we
get � ¼ D� 2 ¼ 1; for the flexible polymers, often re-
ferred to as Zimm model [1], the free energy contribution
solely comes from the elastic term, i.e., z ¼ 2, and � ¼
1=2 in � solvent.
Local hydrodynamic interactions.—Examples of the

case where hydrodynamic interactions are completely
screened out are (I) the Rouse model equation for polymer
dynamics [1], once one sets D ¼ 3, d ¼ 1, and z ¼ 2.
(II) The single file system: recently it has been shown
[18] that the dynamics of a gas of Brownian hard rods on
a line can be mapped onto the harmonic chain problem
(z ¼ 2), where hðx; tÞ stands for the position of the xth
particle on the one-dimensional substrate at time t.
(III) Fluctuating interfaces [7,8], where h plays the role
of a scalar field (mostly the height of a rough surface in d
dimension) which is subjected to a nonstandard elastic
force embodied by the fractional derivative of order z.
This is actually the generalization of the Edwards-
Wilkinson equation for the fluctuating profile of a granular
surface, for which d ¼ 2, z ¼ 2 [9]. In systems such as
crack propagation [10] and contact line of a liquid menis-
cus [11], d ¼ 1 and the restoring forces are characterized
by z ¼ 1. If instead h is meant to be a step, namely, a line
boundary at which the surface changes height by one or
more atomic units, the value of z in Eq. (1) is found to be
z ¼ 2, 3, or 4 (d ¼ 1) according to the character of the
atomic diffusion [12]. (IV) Diffusion-noise equation [13]:
in this case h represents the density field on a
d-dimensional surface ~x and z ¼ 2.
The aim of this Letter is to derive the non-Markovian

time–fractional Langevin equation (FLE) for the field hj at

a given position ~x (probe particle), given that the whole
system’s dynamics obeys the space fractional Markovian
equation (1). We interpret the FLE as a particular case of a
broader class of stochastic equations for fractional
Brownian motion (FBM), i.e., the generalized fractional
Langevin equation.
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Autocorrelation function.—We hereby calculate the
h-autocorrelation function h�hð ~x; tÞ�hð ~x; t0Þi ¼
h½hjð ~x; tÞ � hjð ~x; 0Þ�½hjð ~x; t0Þ � hjð ~x; 0Þ�i. Defining the

Fourier transform in space and time as hjð ~q; !Þ ¼R
ddxdte�ið ~q� ~x�!tÞhjð ~x; tÞ, the solution of (1) is

hjð ~q;!Þ ¼ �jð ~q; !Þ
�i!þ�ð ~qÞj ~qjz ; (3)

where�ð ~qÞ stands for the d-dimensional Fourier transform

of the hydrodynamic interaction term, reading �ð ~qÞ ¼
ð4�Þd=2

2�
�½ðd��Þ=2�

�ð�=2Þ j ~qj��d ¼ Aj ~qj��d; if � ¼ d in the first ap-

proximation we can neglect the logarithmic corrections in
the hydrodynamic term’s Fourier transform [2], i.e.,
�ð ~qÞ � const. In the local hydrodynamic situation �ð ~qÞ ¼
1, which corresponds to put A ¼ 1 and � ¼ d in the long-
ranged hydrodynamic expression: this substitution (which
is not to be intended as a limit) allows us to easily shift
from power-law to local hydrodynamics throughout the
following analysis. Moreover, due to the isotropy of the
problem under study, we can drop the label j in (3). The
h-autocorrelation function is readily obtained: the general
expression looks like

h�hð ~x; tÞ�hð ~x; t0Þi ¼ K½t� þ t0� � jt� t0j��; (4)

where the anomalous diffusion exponent � and the diffu-
sion constant K are defined as

�¼ z�d

�þ z�d
; K¼ 2kBT�

d=2

ð2�Þd�ðd=2Þ
A��ð1��Þ

z�d
: (5)

Henceforth we will concentrate on the case z > d, which
does not need any regularization of the ~q integrals in the
inverse Fourier transform. The cases z < d and z ¼ d will
be reported elsewhere. From (4) it is apparent that the
probe particle placed at a given ~x performs a FBM which
is always subdiffusive, namely, h�2hð ~x; tÞi ¼ 2Kt�.

Fractional Langevin equation.—We now proceed to
derive the FLE for a probe particle placed at position ~x,
which fulfills the FD relation. In what follows we show that
this is the only fractional stochastic equation physically
relevant for the considered system (1). We first include
long-ranged hydrodynamic interactions. We multiply both
sides of the Fourier solution (3) by Kþð�i!Þ�, where
Kþ ¼ kBT

K
1

�ð1þ�Þ . We then define the following function:

�ð ~x; !Þ ¼
Z ddq

ð2�Þd
e�i ~q� ~xð�i!Þ�

�i!þ Aj ~qjzþ��d
: (6)

Inverting the Fourier transforms in space gives

ð�i!Þ�Kþhð ~x; !Þ ¼ �ð ~x; !Þ; (7)

where we have introduced the fractional Gaussian noise
�ð ~x; !Þ ¼ Kþ R

ddx0�ð ~x� ~x0; !Þ�ð ~x0; !Þ. In the time do-
main the previous equation takes the final form of a FLE
[5,18–21]:

KþD�
þhð ~x; tÞ ¼ �ð ~x; tÞ; (8)

where D�
þ is the Caputo derivative defined as [15,22]

D�
þfðtÞ¼

1

�ð1��Þ
Z t

�1
dt0

1

ðt� t0Þ�
d

dt0
fðt0Þ; 0<�<1:

(9)

The noise in (8) can be shown to satisfy the FD relation,

h�ð ~x; tÞ�ð ~x; t0Þi ¼ kBT
Kþ

�ð1� �Þjt� t0j� : (10)

In the absence of any hydrodynamic interaction the anoma-
lous diffusion exponent � in (8) and (10) is � ¼ 1� d=z
[8]. Along these lines, the FLE for the case d ¼ 1, z ¼ 2,
�ðx� x0Þ ¼ �ðx� x0Þ has been obtained in [18]: our
derivation can thus be viewed as a generalization of the
technique used in such a model. We emphasize that the
spatial correlations appearing in the model (1) are trans-
lated into time correlations described by the fractional
derivative (9), together with the space-time correlations
of the noise �ð ~x; tÞ. As a consequence, any h-correlation
function can be calculated starting from (8); e.g.,
h½hð ~x; tÞ � hð ~x0; 0Þ�2i has been studied for fluctuating mem-
branes [6]. We note that the underlying assumption in the
expression (8) is that the system has reached the thermal
equilibrium at t ¼ 0 and the system’s configuration is
drawn from the stationary Gibbsian probability distribution

�e�ð1=2kBTÞ
R

d~x½@z=2hð ~x;0Þ=@j ~xjz=2�2 [23].
Now, it is possible to recast the result (10) in the same

fashion as the fractional Gaussian noise correlation func-

tion of a FBM [24]: h�HðtÞ�Hðt0Þi / jt� t0j2H�2, with H ¼
1� �

2 . It stems from (4) and (5) that the h-autocorrelation

function can be expressed as h�hð ~x; tÞ�hð ~x; t0Þi / t2�2H þ
t02�2H � jt� t0j2�2H, which is at odds with the corre-
sponding standard FBM quantity [24], whose exponent is
2H. However, this is not surprising, since the two processes
obey two different stochastic fractional equations: (i) the
FLE (8) for systems which fulfill the FD relation, and
(ii) the usual equation

dBHðtÞ
dt

¼ �HðtÞ (11)

for FBM [24].
Generalized fractional Langevin equation.—Let us now

generalize Eqs. (8) and (11). Consider a stochastic process
GðtÞ governed by the following dynamical equation,

D
�
þGðtÞ ¼ �HðtÞ; (12)

where �HðtÞ is a fractional Gaussian noise which satis-
fies h�HðtÞi ¼ 0 and h�HðtÞ�Hðt0Þi ’ Cjt� t0j2H�2 for
jt� t0j ! 1with 0<H < 1,H � 1=2; C< 0 if 0<H <
1=2, and C> 0 if 1=2<H < 1. For H ¼ 1=2 (C> 0)
�HðtÞ is the white Gaussian noise [25]. The fractional
derivative has been defined in (9). It is immediate to
recover Eq. (11) in the limiting case � ¼ 1, once D1þ ¼
d=dt and C ¼ 2Hð2H� 1Þ, and also the FLE (8), set-
ting Kþ ¼ 1, for systems satisfying the FD relation:
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� ¼ 2� 2H and C ¼ kBT=�ð2H � 1Þ. The autocorrela-
tion function can be calculated to yield

h�GðtÞ�Gðt0Þi¼ Csinð�HÞ�ð2H�1Þ
sin½�ðHþ��1Þ��ð2Hþ2��1Þ
�½t2ðHþ��1Þþ t02ðHþ��1Þ�jt
� t0j2ðHþ��1Þ�: (13)

Expression (13) shows that GðtÞ is a FBM with Hurst
exponent HFBM ¼ H þ�� 1 (1<Hþ�< 2 [26]). As
a consequence, systems for which H þ�< 3=2 exhibit
subdiffusive motion, which instead is superdiffusive for
H þ�> 3=2. It is interesting to note that the class of
FBM for which the FD relation holds can be only subdif-
fusive. These results are summarized in Fig. 1.

An important corollary of (13) states that any statistical
property which is shown to be valid for a given pair of
values �0 and H0 is automatically valid for any other pair
(�00, H00) which satisfies �0 þH0 ¼ �00 þH00. The dem-
onstration is straightforward: it is sufficient to note that,
since GðtÞ is a Gaussian process, it is fully specified by the
correlation function (13). As an example, take the first
passage time distribution (FPT) in a semi-infinite domain
for a FBM, which decays asymptotically like �tHFBM�2

[8,27]. We immediately get that the FPT distribution for
a process which is a solution of (12) is given by �t�þH�3,

which in turn reads �tð�=2Þ�2 for systems obeying (1). We
numerically support this result as shown in Fig. 2. The FPT
distribution of a tagged particle in single file system, which
has been shown to be described by a FLE with H ¼ 3=4
[18,20], since � ¼ 2� 2H, attains the�t�1:75 asymptotic
behavior.

On the other hand, given an FBM process with
h�2GðtÞi � t2HFBM , there is no chance to determine the
correct pair (�, H) among the generalized FLEs (GFLEs)
(12) for which �þH � 1 ¼ HFBM. Nevertheless, intro-

ducing an external potential does the trick: for instance,
adding a constant force F on the right-hand side of (12)
gives hGðtÞi ¼ F t�

�ð�þ1Þ , while a harmonic force ��2GðtÞ
leads to the relaxation hGðtÞi=Gð0Þ ¼ hGðtÞGð0Þi=
hG2ð0Þi ! E�;1½�ðt=t0Þ��, in the case of deterministic

and thermal initial conditions, respectively, where t0 ¼
��2=� andE�;� stands for theMittag-Leffler function [22].

One might question the uniqueness of the FLE (8)
among the whole family of GFLEs for the probe particle
hð ~x; tÞ. It is possible to show that Eq. (8) is the unique
GFLE for a process hð ~x; tÞ whose dynamics is ruled by
Eq. (1). The demonstration deals with the introduction of a
local constant force field Fj�ð ~x� ~x?Þ	ðtÞ on the right-

hand side of Eq. (1). Since the system fulfills the FD
relation (2), the connection between the average drift of
hð ~x?; tÞ and its mean square displacement in the absence of
force is given by the Einstein relation

hhð ~x?; tÞiF ¼ F
h�2hð ~x?; tÞi

2kBT
: (14)

The only GFLE which reproduces (14) is that which pre-
serves the FD relation, i.e., the FLE (8).
Let us now briefly discuss a practical example of

the usefulness of the framework developed here. In
Refs. [21,28] Xie and co-workers succeeded in modeling
the motion of the donor-acceptor (D-A) distance within
a protein, as the coordinate of a fictitious particle diffus-
ing in an harmonic potential according to a FLE with
fractional derivative of order 1=2. In the spirit of
Refs. [29,30], we consider an idealized Rouse chain as a
model for the protein conformational dynamics. Therefore
we take D ¼ 3, d ¼ 1, z ¼ 2, and �ðx� x0Þ ¼ �ðx� x0Þ

diffusion
super-

diffusion

H

µ

sub-

FLE−FD

1

1

Eq.(11)

FIG. 1 (color online). Schematic picture of the generalized
FLE (�, H) parameter space.
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FIG. 2 (color online). FPT distribution of the tagged single file
particle initially placed at distance L from the adsorbing bound-
ary. The system consists of 2� 104 Brownian particles subjected
to hard-core interaction. Simulation details can be found in
[18,20]. The parameters are the file’s particle density 
 ¼
0:25, the temperature kBT ¼ 1, and the damping �. The theo-
retical prediction �t�1:75 has been drawn for the reader’s con-
venience (dashed line).
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in (1). The D-A distance vector can be expressed as
�D-AðtÞ ¼ hðxA; tÞ � hðxD; tÞ, and its correlation function
by [30] h�D-AðtÞ ��D-Aðt0Þi ¼ 3h�D-AðtÞ�D-Aðt0Þi due to
the isotropy of the system. Hence, we can employ the re-
sult of Ref. [18], which shows that the generalized
Langevin equation for the single component �D-AðtÞ is

1=2D1=2
þ �D-AðtÞ ¼ �!2

0½�D-AðtÞ ��D-Að0Þ� þ �D-AðtÞ in
the long time limit, with !0 / ðxA � xDÞ�1=2 and �D-AðtÞ
satisfying the FD relation. However, we point out here
again that h�D-AðtÞ�D-Aðt0Þi can be evaluated directly
from Eq. (8).

Nonthermal initial conditions.—Let us now assume that
the initial conditions for the system in (1) are given by

hð ~x; 0Þ ¼ 0 (15)

without loss of generality. For systems such as fluctuating
interfaces [7–9,12] or membranes [2,4–6], Eq. (15) as-
sumes the interface to be flat at t ¼ 0. In the case of a
polymer, we can imagine Eq. (15) to be valid only for the
jth component, achieving an initial configuration which is
randomly arranged within the plane j ¼ 0. For single file
systems Eq. (15) consists of taking particles equally spaced
at t ¼ 0. The h-autocorrelation function can be obtained in
the same fashion as in the case of thermal initial conditions
by using the Laplace transform in time instead of the
Fourier transform. A straightforward calculation yields

h�hð ~x; tÞ�hð ~x; t0Þi ¼ K½ðtþ t0Þ� � jt� t0j��; (16)

where the values of K and � get the same expressions as in
(5). For local hydrodynamics Eq. (16) matches the result
previously obtained by Krug et al. for fluctuating interfaces
[8].

It is easy to show that the FLE expression (8) is still
valid, with the Caputo derivative having its lower terminal
at t ¼ 0 [22,31]. When attempting to recover the FD
relation, however, one gets the following form of the noise
correlation function:

h�ð ~x; tÞ�ð ~x; t0Þi ¼ kBTK
þ

�ð1� �Þ ½jt� t0j�� � ðtþ t0Þ���:
(17)

Expression (17) clearly shows that the noise � attains the
stationarity (10) in the limit (t, t0 ! 1).

Discussion.—In this Letter we presented the derivation
of the FLE for a wide class of phenomena, whose stochas-
tic dynamics is ruled by the generalized elastic model (1).
The introduced framework offers theoretical and practical
advantages. On one hand, different physical systems can be
defined on the basis of a unique index: the fractional
derivative order (universality class). On the other hand,
the FLE allows us to achieve the relevant statistical ob-
servable by simply solving or simulating a non-Markovian
linear equation for the probe particle. Finally, from an
experimental perspective, the FLE description allows the
straightforward detection of the microscopical parameters
characterizing the system (1).
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