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We study an efficient algorithm to hash any single-qubit gate into a braid of Fibonacci anyons
represented by a product of icosahedral group elements. By representing the group elements by braid
segments of different lengths, we introduce a series of pseudogroups. Joining these braid segments in a
renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations
of braids. With braids of length O(log?(1/¢)), we can approximate all SU(2) matrices to an average error &
with a cost of O(log(1/¢)) in time. The algorithm is applicable to generic quantum compiling.

DOI: 10.1103/PhysRevLett.104.160502

Quantum gates are the building blocks for quantum
circuits. A reliable implementation of quantum computa-
tion would need a universal set of fault-tolerant gates. How
to use the set of universal gates to construct quantum
circuits is an important question [1]. The question also
arises if we want to simulate the circuits of the universal
set by using those of another set. The Solovay-Kitaev
algorithm [2] guarantees good approximations to any de-
sired gates, provided that a dense enough € net exists.
Instead of using quantum error-correction codes, topologi-
cal quantum computation [3—7] proposes to realize fault-
tolerant quantum gates by topology embedded in hard-
ware. In two-dimensional topological states of matter, a
collection of non-Abelian anyonic excitations with fixed
positions spans a multidimensional Hilbert space and, in
such a space, the quantum evolution of the multicompo-
nent wave function of the anyons is realized by their braid-
ings. The evolution can be represented by nontrivial uni-
tary matrices that implement quantum computation. A pro-
totype of non-Abelian anyons is known as the Fibonacci
anyons, which exist in the Read-Rezayi quantum Hall state
at filling fraction » = 3/5 [8] (whose particle-hole con-
jugate is a candidate for the observed » = 12/5 quantum
Hall plateau [9]) and in the non-Abelian spin-singlet state
at v = 4/7 [10]. In topological quantum computation, the
topology of the quantum braids precludes errors induced
by local noises; unfortunately, this does not eliminate the
errors in approximating quantum gates by braids.

Bonesteel er al. pioneered the implementation of quan-
tum gates using Fibonacci anyons with a brute-force search
algorithm [11,12], which finds the best approximation to a
unitary matrix 7" in the set of all braids up to a certain
length L. As for all quantum computation schemes, the
complexity (thus inefficiency) in brute-force search is dic-
tated by the necessity to sample the whole space of unitary
matrices with almost equal weight, while the target gate is
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just a zero-measure point inside. Thus the distance [13] of
the approximation depends on L as e %/¢ (with & =~7.3
[14]). However, the run time grows exponentially in L,
rendering the algorithm impractical to achieve a distance
below a certain threshold. In fact, the most probable braids
generated by the brute-force algorithm have the largest
distance to the desired gate due to the geometry of the
unitary matrix space [13], as illustrated in Fig. 1.
Subsequent algorithms [14,15] enhance the sampling of
the target point by mapping it to a higher-dimensional
object, although the search remains timeconsuming. The
inefficiency in these algorithms is also reflected in the fact
that a new unitary matrix needs a new brute-force search,
which is exponentially hard. The existing implementation
of the Solovay-Kitaev algorithm [16] is not efficient
enough in terms of either braid length or searching time.

The question is thus the following: can one implement a
more efficient search algorithm to find braids for single-
qubit gates? Technically, we can think of a braid as an
index to the corresponding unitary matrix, which can be
regarded as a definition, like in a dictionary. Given an
index, it is straightforward to find its definition, but finding
the index for a definition is exponentially hard. In computer
science, the task of quickly locating a data record given its
content (or search key) can be achieved by the introduction
of hash functions. In the context of topological quantum
computation, we thus name this task topological quantum
hashing. In general, such a hashing function, being imper-
fect, still maps a unitary matrix to a number of braids rather
than one. But narrowing the search down to only a fixed
(rather than exponentially large) number of braids is al-
ready a great achievement.

In this Letter, we explore topological quantum hashing
with the finite icosahedral group I and its algebra. The
building blocks of the algorithm are a preprocessor and a
main processor: the aim of the preprocessor is to give an
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FIG. 1 (color online). Probability distribution of distance d
[13] to the targeted identity matrix in the set of nontrivial braids
that one samples in different algorithms. Pgg(d) of the brute-
force search (red solid squares) roughly follows
(4/m)d*\J1 — (d/2)?, reflecting the three-sphere nature of the
unitary matrix space (three independent parameters apart from
an unimportant phase). In the pseudoicosahedral group approach
(n = 4), distributions for L = 8 (Pg, black empty circles) and
L =24 (P,, blue solid trangles) agree very well with the
energy-level-spacing distribution of the unitary Wigner-Dyson
ensemble of random  matrices, P;(d) = (32/m?) X
(d*/d3)e~#/™\d/d)’ " p, (d) differ only by their corresponding
average d; (not a fitting parameter), which decays exponentially
as L increases. Note P,4(d) is roughly ten-times sharper and
narrower than Pg(d).

initial approximation T of the target gate 7, while that of
the main processor is to reduce the discrepancy between T
and T with extremely high efficiency. We discuss the
iteration of the algorithm in a renormalization group fash-
ion and the results which follow from this approach. The
algorithm is also applicable to generic quantum compiling
and, remarkably, its efficiency can be quantified using
random matrix theory.

We illustrate our algorithm with Fibonacci anyons (de-
noted as ¢, with a fusion rule ¢ X ¢ = 1 + ¢, where 1 is
the vacuum) [11,12,14-16]. If we create two pairs of ¢
(illustrated graphically by dots) out of the vacuum, both
pairs (small ellipses) must have the same fusion outcome, 1
or ¢, forming a qubit (large ellipse), in which the braiding
of ¢’s can be generated by two fundamental braiding
matrices

o—i47/5 0
o im/b 27 /5
1 \7/—SeL2ﬂ'/5 \/7_—_67_ :| ) (2)

and their inverses 7', o;'. Here 7= (/5 — 1)/2. The
matrix representation generates a four-strend braid group
B, (or an equivalent three-strand braid group Bs): this is an

infinite dimensional group consisting of all possible se-
quences of length L of the above generators and with
increasing L the whole set of braidings generates a dense
cover of the SU(2) single-qubit rotations. Earlier works
[11,14-16] have demonstrated that the two-qubit gate con-
struction can be mapped to the single-qubit gate construc-
tion; thus, we will not discuss the construction of two-qubit
gates here.

Icosahedral group.—The icosahedral rotation group J
of order 60 is the largest finite subgroup of SU(2) exclud-
ing reflection. Therefore, it has been often used to replace
the full SU(2) group for practical purposes, as, for ex-
ample, in earlier Monte Carlo studies of SU(2) lattice
gauge theories [17], and this motivated us to apply the
icosahedral group representation in the braid construction.
J is composed by the 60 rotations around the axes of
symmetry of the icosahedron (platonic solid with 20 trian-
gular faces) or of its dual polyhedron, the dodecahedron
(regular solid with 12 pentagonal faces); there are six axes
of the fifth order, ten of the third, and 15 of the second. Let
us for convenience write J = {gg, g1, ..., gs9}, Where go =
e is the identity element.

Thanks to the homomorphism between SU(2) and
SO(3), we start by associating a 2 X 2 unitary matrix to
each group element. In other words, each group element
can be approximated by a braid of Fibonacci anyons of a
certain length N using the brute-force search [11] and
neglecting an overall phase. In this way, we obtain an
approximate representation in SU(2) of the icosahedral
group, J(N) = {gy(N), 8,(N), ..., 859(N)}. Choosing, for
instance, a fixed braid length of N = 24, the distance (or
error) of each braid representation to its corresponding
exact matrix representation varies from 0.003 to 0.094
(see Fig. 2 for an example).

We point out that the 60 elements of 7(N) (for any finite
N) do not close any longer the composition laws of I; in
fact, they form a pseudogroup, not a group, isomorphic to
I only in the limit N — oo. In other words, if the compo-
sition law g;g; = g, holds in the original icosahedral
group, the product of the corresponding elements g;(N)
and g;(N) is not g;(N), although it can be very close to it
for large enough N. Interestingly, the distance between the
product g;(N)g;(N) and the corresponding element g of T
can be linked to the Wigner-Dyson distribution, which we
will discuss later.

Using the pseudogroup structure of 1, we can generate a
set S made of a large number of braids only in the vicinity
of the identity matrix: this is a simple consequence of the
original icosahedral group algebra, in which the composi-
tion laws allow us to obtain the identity group element in
various ways. The set S is instrumental to achieve an im-
portant goal, i.e., to search among the elements of S the
best correction to apply to a first rough approximation of
the target single-qubit gate 7 we want to hash. We can
create such a set, labeled by S(L, n), considering all the
possible ordered products &; (L)g;,(L)---g; (L) of n =2
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FIG. 2 (color online). Approximation to the —iX gate (an
element of the icosahedral group) in terms of braids of the
Fibonacci anyons of length L = 24 in the graphic representation.

In this example the error is 0.0031.

elements of J(L) of length L and multiplying them by the
matrix g; (L) € I(L) such that g; = = gilrgn e
In this way we generate all the possible combinations of
n + 1 elements of J whose result is the identity, but, thanks
to the errors that characterize the braid representation 7,
we obtain 60" small rotations in SU(2), corresponding to
braids of length (n + 1)L.

The hashing procedure.—The first step in the hashing
procedure of the target gate is to find a rough braid repre-
sentation of T using a preprocessor, which associates to 7'
the element in [7(1)]™ (of length m X [) that best approxi-
mates it. Thus we obtain a starting braid Té’" =
g;,(Dg;,(1)--- g; (I) characterized by an initial error we
want to reduce. The preprocessor procedure relies on the
fact that choosing a small / we obtain a substantial dis-
crepancy between the elements g of the icosahedral group
and their representatives g. Because of these random errors
the set [J(1)]™ of all the products g8, g, is well
spread all over SU(2) and can be considered as a random
discretization of this group.

In the main processor we use the set of fine rotations
S(L, n) to efficiently reduce the error in 75™. Multiplying
T5™ by all the elements of S(L, n), we generate 60" pos-
51ble braid representations of T Témg, &8 8.,
Among these braids of length (n + 1)L + ml, we search
the one which minimizes the distance with the target gate
T. This braid, TIL";, is the result of our algorithm. Figure 4
shows the distribution of final errors for 10 000 randomly
selected target gates obtained with a preprocessor of / = 8
and m = 3 and a main processor of L = 24 and n = 3.

To illustrate our algorithm, it is useful to consider a
concrete example: suppose we want to find the best braid
representation of the target gate

T=iZ=((i) _Ol.). 3)

Out of all combinations in [ 7(8)]?, the preprocessor selects
a ng =Z,,(8)§,,(8)g,,(8), which minimizes the distance
to T to 0.038. Applying now the main processor, the best
rotation in S(24,3) that corrects 757 is given by a
8,,(24)8,,(24)8,,24)8,,(24), where g, =g, 'g.'2,".
The resulting braid [18] is then represented by

=g, 8)3,,8),8)3, 243,243,243, (24)

for the special set of p’s and ¢’s and, apart from an overall
phase, the final distance is reduced to 0.000 99 (Fig. 3).

Relationship with random matrix theory.—The distribu-
tion of the distance between the identity and the so-
obtained braids has an intriguing connection to the
Gaussian unitary ensemble of random matrices, which
helps us to understand how close we can approach the
identity in this way, i.e., the efficiency of the hashing
algorithm. Let us analyze the group property deviation
for the pseudogroup I(N) for braids of length N. One
can write §; = g;e’, where A, is a Hermitian matrix,
indicating the small deviation of the finite braid represen-
tation to the corresponding SU(2) representation for an
individual element. For a product of g; that approximate
8i8j """ &n+1 = €, one has

8,3
T24 3

Zigj Burr = gietigielt g, et = e (4)
where H,, is the accumulated deviation. The natural con-
jecture is that, for a long enough sequence of matrix
product, the Hermitian matrix H,, tends to a random matrix
corresponding to the Gaussian unitary ensemble. This is
plausible as H, is the sum of random initial deviation
matrices with random unitary transformations. A direct
consequence is that the distribution of the eigenvalue spac-

ing s obeys the Wigner-Dyson form [19],

o (£) erwmerar, (5)
7T So \So

P(s) =

where s, is the mean level spacing. For small enough
deviations, the distance of H,, to the identity, d(1, e'f») =
|5l + O(I|H,|I%), is proportional to the eigenvalue spac-
ing of H and, therefore, should obey the same Wigner-
Dyson distribution. The conjecture above is indeed well
supported by our numerical analysis, even for n as small as
3 or 4 (see Fig. 1). One can show that the final error of TIL”,‘l
also follows the Wigner-Dyson distribution (as illustrated

@wm&mw S S S o PP %@
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FIG. 3 (color online).
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The graphic representation of the braid approximating the target gate iZ in the icosahedral group approach

with a preprocessor of / = 8 and m = 3 and a main processor of L = 24 and n = 3. To emphasize the structure, we skip the explicit

braid sequence but mark the segments only, among which g, ,,8 3

~iZand §,18§ 0853 = §;41 up to a phase. The braid (with a

reduced length of 98 due to accidental cancellations where the component braids connect) has an error of 0.00099 [18].

160502-3



PRL 104, 160502 (2010)

PHYSICAL REVIEW LETTERS

week ending
23 APRIL 2010

1500

1200

900 1

600

300 r

0.001 0.0015  0.002  0.0025
d

0 0.0005

FIG. 4 (color online). Probability distribution of & in 10000
random tests using the icosahedral group approach with a
preprocessor of / = 8 and m = 3 and a main processor of L =
24 and n = 3. The total length of the braids (neglecting acci-
dental cancellations when component braids connect) is 120. The
trend agrees with the unitary Wigner-Dyson distribution (solid
line) with an average error 7.1 X 1074,

in Fig. 4) with an average final distance f ~ 60"/3/\/n + 1
times smaller than the average error of Th" . where the
factor 60 is given by the order of the icosahedral group.
With a smaller finite subgroup of SU(2), we would need a
greater n to achieve the same reduction.

Conclusions.—In this Letter we have demonstrated that
the problem of compiling an arbitrary SU(2) qubit gate T in
terms of Fibonacci anyons can be solved efficiently by
using hashing functions based on the 60 elements of the
icosahedral group I and their composition laws. Our pro-
cedure can be generalized to other anyonic models, differ-
ent quantum computational schemes, and in principle to
multiqubit gates.

The hashing algorithm uses a light brute-force search up
to L = 24 to initialize the 60 elements of J with an average
precision of about 0.02. The remaining search operations
are based on the composition laws of the group 7, which do
not need any longer to exhaust the exponentially growing
number of possibilities as L increases. Indeed, it takes less
than a second on a 3 GHz Intel E6850 processor to reach an
average precision of 7.1 X 10~ (Fig. 4) for an arbitrary
gate [18].

We can further improve the precision with additional
iterations in the main processor, as we move exponentially
down in error scales in a renormalization group fashion.
For that we need longer braid representations of J, which
must be obtained separately, e.g., by the brute-force search,
and can be stored for all future uses. It follows that ¢
iterations reduce the average error by f¢ within a run
time linear in g. To achieve an error smaller than a given
e, one needs g ~ log(1/¢) consecutive iterations. There-
fore, the run time grows as T ~ log(1/¢), better than the
polylogarithmic time of the efficient implementation of the
Solovay-Kitaev algorithm [20]. The iterative hashing algo-

rithm generates a final braid of length O(log?(1/¢)), com-
peting favorably with the results of other efficient quantum
compiling algorithms [1,20]. We hope that the quantum
hashing algorithm, with potential improvements and hy-
bridizations with other algorithms, introduces a new direc-
tion for efficient quantum compiling.
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Note added.—Recently, we noticed a paper [21] that
discusses a geometrical approach with binary polyhedral
groups.
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