Ivanov and Kienle Reply: Nowadays it is well established experimentally that neutrinos ν_{α} with lepton flavors $\alpha =$ e, μ , and τ are superpositions $|\nu_{\alpha}\rangle = \sum_{j} U^*_{\alpha j} |\nu_j\rangle$ of massive neutrino mass eigenstates $|v_j\rangle$ with masses m_j , where $U_{\alpha j}^*$ are elements of the 3 × 3 unitary mixing matrix U, defined by mixing angles θ_{ij} [\[1](#page-0-0)]. The wave functions $|\nu_{\alpha}\rangle$ and $|\nu_i\rangle$ each represent orthogonal bases and are used for the description of neutrino oscillations $\nu_{\alpha} \leftrightarrow \nu_{\beta}$ with frequencies $\omega_{ij} = \frac{\Delta m_{ij}^2}{2E}$, where E is the neutrino energy and $\Delta m_{ij}^2 = m_i^2 - m_j^2$ [[1](#page-0-0)]. In K-shell electron capture (EC) decays of the H-like heavy ions $p \rightarrow d + \nu_e$, where p and d are the parent and daughter ions in their ground states [\[2,](#page-0-1)[3](#page-0-2)], one deals with an emission of electron neutrinos $|\nu_e\rangle = \sum_j U_{ej}^* |\nu_j\rangle$. Thus, the EC-decay rates of the H-like heavy ions are defined by the decay channels $p \rightarrow d_i + \nu_i$, where the final states are described by the orthogonal wave functions $\langle v_i d_i | d_j v_j \rangle = 0$ for $i \neq j$. The states of the daughter ions d_j differ in 3-momenta \vec{q}_j and energies $E_d(\vec{q}_i)$. The massive neutrinos ν_i are produced with 3momenta $\vec{k}_j = -\vec{q}_j$ and energies $E_j(\vec{k}_j)$, caused by conservation of energy and momentum in the decay channels $p \rightarrow d_i + \nu_i$. Since massive neutrinos ν_i are not detected they appear in the asymptotic states with 3-momenta \vec{k}_i , energies $E_j(\vec{k}_j)$, and energy differences $\omega_{ij} = \Delta m_{ij}^2/2M_p$, where M_p is the mass of the parent ion p [\[3\]](#page-0-2). In the GSI experiments [\[2](#page-0-1)[,3](#page-0-2)] the EC-decay channels $p \rightarrow d_i + \nu_i$ are measured by detecting the daughter ions d_i . If the daughter ions were detected in the asymptotic states with 3 momenta \vec{q}_j and energies $E_d(\vec{q}_j)$, the probability per unit time of the EC decay $p \rightarrow d + \nu_e$ would be equal to

$$
P(p \to d\nu_e)(t) = \sum_j |U_{ej}|^2 P(p \to d_j \nu_j)(t)
$$

$$
= \sum_j |U_{ej}|^2 \frac{d}{dt} |A(p \to d_j \nu_j)(t)|^2, \quad (1)
$$

where $A(p \rightarrow d_j \nu_j)(t)$ is the amplitude of the decay channel $p \rightarrow d_i + \nu_i$. However, this is not the case in the GSI experiments, where the time differential detection of the daughter ions with a time resolution τ_d leads to indistinguishability of daughter ions in the decay channels $p \rightarrow$ $d_i + v_i$. As a result the daughter ions d_i are measured in the asymptotic state d with a 3-momentum \vec{q} and an energy $E_d(\vec{q})$ such that $\vec{q} \approx \vec{q}_i$ and $E_d(\vec{q}) \approx E_d(\vec{q}_i)$ [\[3\]](#page-0-2). This does not violate the orthogonality of the wave functions in the final state $\langle v_i d | dv_j \rangle = 0$ for $i \neq j$. The energy and momentum uncertainties δE_d and $|\delta \vec{q}_d|$, respectively, induced by the time differential detection of the daughter ions, provide the overlap of the wave functions of the daughter ions if $\delta E_d \gg |\omega_{ij}|$ and $|\delta \vec{q}_d| \gg |\vec{q}_i - \vec{q}_j| = |\vec{k}_i - \vec{k}_j|$, where ω_{ij} present also the differences of the recoil energies of the daughter ions. The time differential detection of the daughter ions d_i in the asymptotic state with the 3momentum \vec{q} and an energy $E_d(\vec{q})$ results in a smearing of momenta and energies in the decay channels $p \rightarrow d_i$ + ν_j around $\vec{q} + \vec{k}_j \approx 0$ and $E_d(\vec{q}) + E_j(\vec{k}_j) \approx M_p$. This is the origin of the nonvanishing interference terms in the probability per unit time of the EC decay $p \rightarrow d + \nu_e$ [\[3\]](#page-0-2)

$$
P(p \to d\nu_e)(t) = \sum_j |U_{ej}|^2 P(p \to d\nu_j)(t)
$$

+
$$
2 \sum_{i>j} \frac{d}{dt} \operatorname{Re}[U_{ei}^* U_{ej} A^* (p \to d\nu_i)(t)
$$

$$
\times A(p \to d\nu_j)(t)],
$$
 (2)

where in comparison with Eq. [\(1](#page-0-3)) the second sum is caused by the interference terms. Since uncertainties δE_d and $|\delta \vec{q}_d|$ are rather small [[3\]](#page-0-2) and $|\vec{k}_j| = |\vec{q}_j| \approx |\vec{q}| \approx Q_{EC}$ and $Q_{EC} \gg m_i$, where Q_{EC} is the Q value of the EC decay $p \rightarrow d + \nu_e$, one can set the neutrino masses zero everywhere except for energy differences ω_{ij} and mixing angles θ_{ij} in the interference terms [\[3](#page-0-2)], and neutrino 3-momenta equal $\vec{k}_j = \vec{k}$. As a result the EC-decay rate is given by [\[3\]](#page-0-2)

$$
\lambda_{\rm EC}(t) = \frac{1}{2M_p} \int P(p \to d\nu_e)(t) \frac{d^3q}{(2\pi)^3 2E_d} \frac{d^3k}{(2\pi)^3 2E_{\nu_e}}
$$

$$
= \lambda_{EC} \left(1 + 2 \sum_{i > j} \text{Re}[U_{ei}^* U_{ej}] \cos(\omega_{ij} t) \right), \tag{3}
$$

Thus, the asymptotic orthogonality of the final state wave functions does not influence the observation of the time modulation of the EC decays, observed in the GSI experiments with a time resolution $\tau_d \ll T_{ij}$ much shorter than the modulation periods $T_{ij} = 2\pi/\omega_{ij}$ [[3\]](#page-0-2). This is unlike the assertion by Flambaum [[4](#page-0-4)]. For $\tau_d \gg T_{ij}$ the time modulation vanishes [see Eq. [\(1\)](#page-0-3)], since the daughter ions d_i become distinguishable with 3-momenta \vec{q}_i and energies $E_d(\vec{q}_i)$. For the theoretical description of the GSI data [\[2](#page-0-1)], accounting for the procedure for the detection of the daughter ions, one can use time-dependent perturbation theory and wave packets for the wave functions of the daughter ions, related to the density matrix description of unisolated quantum systems. For technical details we refer to [[3\]](#page-0-2).

A. N. Ivanov¹ and P. Kienle²
¹Vienna University of Technology Atomic Institute of the Austrian Universities Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria ²Stefan Meyer Institute of Subatomic Physics Boltzmanngasse 3, A-1090, Vienna, Austria

Received 31 August 2009; revised manuscript received 8 October 2009; published 16 April 2010 DOI: [10.1103/PhysRevLett.104.159202](http://dx.doi.org/10.1103/PhysRevLett.104.159202) PACS numbers: 23.40.Bw, 13.15.+g, 14.60.Pq, 26.65.+t

- [1] C. Amsler *et al.*, Phys. Lett. B **667**, 1 (2008).
- [2] Yu. A. Litvinov et al., Phys. Lett. B 664, 162 (2008); P. Kienle, Nucl. Phys. A827, 510c (2009).
- [3] A. N. Ivanov and P. Kienle, Phys. Rev. Lett. **103**, 062502 (2009); arXiv:0909.1287; arXiv:0909.1285.
- [4] V. Flambaum, preceding Comment, Phys. Rev. Lett. 104, 159201 (2010).