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The interevent time distribution characterizes the temporal occurrence in seismic catalogs. Universal

scaling properties of this distribution have been evidenced for entire catalogs and seismic sequences.

Recently, these universal features have been questioned and some criticisms have been raised. We

investigate the existence of universal scaling properties by analyzing a Californian catalog and by means

of numerical simulations of an epidemic-type model. We show that the interevent time distribution

exhibits a universal behavior over the entire temporal range if four characteristic times are taken into

account. The above analysis allows us to identify the scaling form leading to universal behavior and

explains the observed deviations. Furthermore, it provides a tool to identify the dependence on the

mainshock magnitude of the c parameter that fixes the onset of the power law decay in the Omori law.

DOI: 10.1103/PhysRevLett.104.158501 PACS numbers: 91.30.Px, 89.75.Da, 91.30.Dk

Seismic occurrence is a phenomenon of great complex-
ity involving different processes acting on different time
and space scales. In the last decade a unifying picture of
seismic occurrence has been proposed via the investigation
of Dð�tÞ, the distribution of interevent times �t between
successive earthquakes [1–3]. These studies have shown
that, rescaling interevent times by the average occurrence
rate R, Dð�tÞ follows the scaling relation

Dð�tÞ ¼ RfðR�tÞ (1)

where the functional form of fðxÞ is quite independent of
the geographic zone and the magnitude threshold. The
above relation suggests that R is a nonuniversal quantity
and is the only typical inverse time scale affecting Dð�tÞ.
This result, obtained for periods of stationary rate, has been
generalized to nonstationary periods [4] and Omori se-
quences [5,6]. The scaling relation (1) has been also ob-
served for volcanic earthquakes [7]. On the other hand,
recent studies have questioned the universality of the in-
terevent time distribution [8–14]. In particular, deviations
from universality at small �t have been related to the
interplay between correlated earthquakes, following a
gamma distribution, and uncorrelated events, following a
pure exponential decay [14]. This behavior is well de-
scribed by numerical simulations of the epidemic-type
aftershock sequence (ETAS) model [15]. Indeed, analytical
studies [9] and a previous numerical analysis of the ETAS
model [10], have shown that the functional form of Dð�tÞ
depends on the ratio between correlated and independent
earthquakesK. The problem has been also attacked within
the theoretical framework of probability generating func-
tions [11–13]. Saichev and Sornette have obtained an exact
nonlinear integral equation for the ETAS model and solved
it analytically at linear order [11,12]. This solution shows
that the function fðxÞ in Eq. (1) depends onK and on some

other parameters of the model. This behavior is confirmed
if nonlinear contributions are taken into account [13].
Multiplicity of characteristic times is often observed in

the dynamics of complex systems, where different tempo-
ral scales are associated to the relaxation of different
spatial regions or structures. For instance, their existence
is a well established property in glassy materials, polymers
or gelling systems, where they originate from the relaxa-
tion of complex structures at different mesoscopic scales,
or else from the emergence of competing interactions [16].
Moreover, the coexistence of different physical mecha-
nisms acting at different spatiotemporal scales may also
give rise to complex temporal scaling [17]. Therefore, the
identification of the number of relevant time scales con-
trolling universal behaviors is a very debated subject in
complex systems.
In this Letter, we do not assume the existence of a unique

time scale 1=R, as in Eq. (1). We show that four typical
time scales are relevant for the interevent time distribution
scaling: the inverse rate of independent events �, the
average inverse rate of correlated events, the time parame-
ter c defined in the Omori law, and the catalog duration T.
These different time scales lead to deviations from the
simple scaling (1). Nevertheless, we show that the inter-
event time distribution can be expressed in a universal
scaling form in terms of these four characteristic times.
The scaling form allows us to better enlighten the mecha-
nism leading to universality for Dð�tÞ and the deviations
from it. The above analysis also clarifies the dependence of
c on the mainshock magnitude for intermediate mainshock
sizes.
We assume that seismic occurrence can be modeled by a

time-dependent Poisson process with instantaneous rate
�ðtÞ. In this case, the interevent time distribution for the
temporal interval [0, T] is [5]
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where N ¼ R
T
0 ds�ðsÞ is the number of events. The widely

accepted scenario is that seismic occurrence can be con-
sidered as the superposition of Poissonian events occurring
at constant rate � and independent aftershock sequences,
which gives

�ðtÞ ¼ �þ X
i:ti<t

aiðp� 1Þ
�
t� ti
ci

þ 1

��p
(3)

where p > 1 is the exponent of the Omori law. The quan-
tity ai is proportional to the rate of aftershocks correlated
to the ith mainshock since, from Eq. (3), the total number
of events triggered by the ith mainshock is aici. The
productivity law [18] indicates that ai is exponentially
related to the mainshock magnitude ai ¼ A10�mi . The
ETAS model assumes ci ¼ c whereas recent studies on
experimental catalogs have obtained ci ¼ c10�mi which
leads to the so-called generalized Omori law [5,19,20].
The dependence of ci on mainshock magnitudes has been
attributed to a dynamical scaling relation involving time,
space and energy [20–23] or to catalog incompleteness
[24]. Inserting Eq. (3) in Eq. (2), we obtain a scaling
form for Dð�tÞ expressing time in unit of 1=�,

Dð�tÞ ¼ �Gð��t; �= �a;� �c;�TÞ (4)

where �a ( �c) is the value of ai (ci) averaged over all
mainshocks. We show that Eq. (1) represents a particular
case of the more general scaling form (4). Indeed, by
definition, R in the time interval [0, T] is the inverse of
the average�t, and from Eq. (4) R ¼ �=Hð�= �a;� �c;�TÞ,
with Hðy; z; wÞ ¼ R

dxGðx; y; z; wÞx. Therefore, express-
ing � in terms of R and setting K ¼ �a �c , we obtain

Dð�tÞ ¼ RG1ðR�t;K; � �c;�TÞ: (5)

For the ETAS model K ¼ �ac is the branching ratio, i.e.,
the number of direct aftershocks per earthquake.

The complex form of Eq. (3) does not allow the full
derivation of an analytical expression forDð�tÞ, unless one
uses specific assumptions. Saichev and Sornette [12], for
instance, have exactly calculated Dð�tÞ for T ! 1 in the
hypothesis that each earthquake triggers, on average, the
same number of aftershocks, i.e., ai ¼ A and ci ¼ c. This
solution exactly follows the scaling form Eq. (5) with
G1ðx; y; z;1Þ ¼ expf�xð1 � yÞ � ð!2�p � 1Þzy=½ð1 �
yÞð2� pÞ�gðð1� yþ y!1�pÞ2 þ ðp� 1Þ!�pyð1� yÞ=zÞ
with ! ¼ 1þ ð1� yÞx=z. For a given choice of the pa-
rameters K, �c and p the above expression leads to a
Dð�tÞ in good agreement with the experimental distribu-
tion. Interestingly, the above expression coincides with the
linear order of the ETAS model expansion, in the limit

�t � c. Higher order terms lead to small differences with
the above solution [13].
A useful example to understand the role of the different

time scales in Dð�tÞ can be obtained if we limit the
calculation to events in a single aftershock sequence. A
scaling form consistent with Eq. (5) has been already
obtained in Ref. [5] assuming � ¼ 0. Here, we restrict to
large T and�t � T assuming that �ðtÞ is about constant in
�t. This choice does not represent a loss of generality for
sufficiently small �t. Under these assumptions, Eq. (2)

becomes Dð�tÞ ¼ 1
N

R
T
0 ds�

2ðsÞe��ðsÞ�t which can be an-

alytically integrated. Three typical regimes can be identi-
fied: (i) At large times ��t > 1 (i.e., x > 1), with
�t=T � 1, Dð�tÞ decays as expð���tÞ as already ob-
served [9]. (ii) At intermediate times c < �t < 1=� (y <
x < 1), we observe a power law decay �t�� with � ¼ 2�
1=p, as predicted by Utsu [25]. (iii) At small times �t �
cðx=y � 1Þ, Dð�tÞ becomes �t independent. The three
regimes can be identified in Fig. 1 where, for a fixed value
of � and different c, we plot �tDð�tÞ vs R�t. This is
equivalent to the representation adopted by [14] and allows
us to better enlighten deviations from the scaling relation
(1). We observe that all curves present a peak at R�t ’ 1
and then exponentially decay for R�t > 1. Conversely, at
small times (�t < c), all the curves increase linearly since
Dð�tÞ is constant. The intermediate regime can be ob-
served only for the two smallest values of c, since only
in these cases �c � 1 and the intermediate regime has a
finite extension. In this regime an about flat behavior is
observed since for p ¼ 1:05, � ’ 1. Notice that one of the
theoretical curves provides a good qualitative fit of the
distribution obtained from experimental data [26].
In Fig. 2 we present the results of numerical simulations

of the ETAS model obtained following the method of
Ref. [27]. We perform extensive simulations in order to
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FIG. 1 (color online). �tDð�tÞ vs R�t for the single Omori
sequence with � ¼ 3� 10�7 events per second and varying c
from 40 to 4� 107 sec (from left to right). Other model pa-
rameters are T ¼ 1� 107 sec , A ¼ 1 and p ¼ 1:05. Open
circles represent �tDð�tÞ for the California catalog [26].
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recover the limit T ! 1 and neglect the dependence on
�T. Previous studies [10] have proposed that Dð�tÞ only
depends on the branching ratio and used this result to
measure the ratio between triggered and independent
events in experimental catalogs. Sornette et al. [13] have
shown that the functional form ofDð�tÞ also depends on p,
whose experimental values fluctuate around one. Our nu-
merical simulations with a random p 2�1; 1:6� indicate
that Dð�tÞ depends on the average p value. In the follow-
ing we present results for simulations with p ¼ 1:2. A very
similar pattern is obtained for other p values. Figure 2(a)
shows that for fixed values of � and c the curves exhibit
different behaviors for different K, in agreement with
previous results. We then focus on the role of the parameter
c. In Fig. 2(b), we plot �tDð�tÞ at constant K and c and
for different values of �, as in Ref. [14]. We confirm the
existence of deviations from scaling (1) at small �t which
can be attributed to c. In order to show that the dependence
on c enters in the scaling form as� �c, in Fig. 2(c), we fix the
branching ratio K and vary � as in Fig. 2(b), but now c is
allowed to vary keeping constant �c. In this case all the
distributions collapse on the same master curve revealing a
‘‘universal’’ behavior also at small�t. This result indicates
that deviations from Eq. (1) rely on the presence of the
variable � �c in Eq. (4). The dependence on this variable is
relevant for �t < c and becomes negligible at larger �t.
This accounts for the appearance of deviations from uni-
versality only at small �t.

We now explore the role of the characteristic time c on
the scaling properties of �tDð�tÞ for the experimental
catalog [26]. We first consider the whole catalog. In this
case �T is very large and does not affect the scaling form
(5). To isolate the dependence on � �c, we plot �tDð�tÞ
including in the analysis only earthquakes above a lower
magnitude threshold mth. �= �a, indeed, should not depend
on mth [12] and �tDð�tÞ is expected to depend only on
R�t and � �c. Figure 3(a) shows deviations from universal-
ity. Since these deviations are confined at small�t they are
not easy to detect in the usual plot R�1Dð�tÞ vs R�t [2].
Deviations must be attributed to � �c and allow us to iden-
tify �c from the crossover points separating the linear
growth from the plateau [identified by arrows in
Fig. 3(a)]. Using the known values of R we obtain that �c
is quite independent of mth. This is consistent with ci
independent of mainshock magnitudes but also with ci /
10�ðmi�mthÞ and �< b [28]. The dependence of ci on mi

and its influence on the Dð�tÞ can be obtained by restrict-
ing the analysis to temporal periods soon after mainshocks.
In these intervals, � can be neglected simplifying the
scaling relation (5). We further observe that for a single

Omori sequence R ¼ N=T ¼ aici½1� ðT=ciÞð1�pÞ�=
½Tðp� 1Þ� and therefore R=ai is a function only of the
ratio T=ci. In this case the scaling simplifies to

Dð�tÞ ¼ RG2

�
R�t;

T

ci

�
: (6)

We start by considering the main-aftershock sequences for
the three largest shocks recorded in the catalog: Landers,
Northridge, and Hector Mine. We consider as aftershocks
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FIG. 2 (color online). �tDð�tÞ vs R�t for the simulated
catalogs with T ¼ 107 and p ¼ 1:2. (a) �tDð�tÞ for c ¼
3000, � ¼ 8� 10�6 events per unit time and varying K using
different A values reported in the legend. (b) �tDð�tÞ for c ¼
3000, K ¼ 0:5 and varying � according to the legend in panel
(c). (c) We fix c� ¼ 0:24 obtaining data collapse withK ¼ 0:5.
In all figures the time unit is the iteration step of the model.
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FIG. 3 (color online). (a) �tDð�tÞ vs R�t for different mag-
nitude thresholds mth; (b) for the Landers, Northridge, and
Hector Mine sequences (mainshock magnitudes m ¼ 7:3, 6.7,
7.1, respectively) with fixed duration T ¼ 10 days; (c) for the
Landers, Northridge, and Hector Mine sequences with T chosen
following the criterion of Ref. [6]; (d) for all sequences with a
mainshock magnitude m greater than 4 grouped in classes of m,
m 2 ½M;Mþ 0:5½.
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all events withm � 2:5 occurring in a temporal window [0,
T] after the main event and within the aftershock zone, i.e.,
a radius L ¼ 0:01� 100:5mi km from the mainshock.
Different definitions of the aftershock zone [29] lead to
very similar results. We first fix T ¼ 10 days for all se-
quences. In Fig. 3(b) the curves do not collapse but show a
progressive shift as the mainshock magnitude increases.
This effect can be attributed to dependence of ci on mi.
Therefore, at fixed T the variable T=ci assumes different
values for each sequence violating the collapse Eq. (1). As
an alternative approach we use the criterion proposed in
Ref. [6] to identify the end of a sequence: namely, a
sequence ends when the rate �ðtÞ reaches the average
Poisson rate� ’ 2 events/day. Figure 3(c) clearly indicates
a very good data collapse for the different sequences in
good agreement with Eq. (1). This can be understood from
the scaling relation (6) where the variable T=ci assumes the
same value for all sequences. Indeed, according to the
Omori law, for t � c the occurrence rate can be expressed
as �ðtÞ � 10�mit�p and the condition �ðTÞ ¼ 2 provides

T � 10�mi=p. For the largest mainshocks, ci � 10bmi=p

[5,6] and therefore, the condition � ’ b=p implies that
the ratio T=ci is almost constant for the three sequences.

Next, we extend the above analysis to all sequences with
mainshock magnitudem> 4. To improve the statistics, we
group mainshocks in classes of magnitude m 2 ½M;Mþ
0:5½. Mainshocks are identified with the criterion suggested
in Ref. [6] and the duration is again fixed by the condition
�ðTÞ ¼ 2. Other methods [29] for aftershock identification
provide similar results. Figure 3(d) shows data collapse for
allM values. Since the criterion �ðTÞ ¼ 2 roughly implies
T � 10�M, the collapse of Fig. 3(d), suggests that the

dependence of ci on the mainshock magnitude as ci �
10bmi=p is valid also for intermediate mainshock
magnitudes.

In conclusion, we address recent criticisms to the uni-
versal behavior of the interevent distribution. We follow
the approach of Ref. [14] and show thatDð�tÞ does exhibit
universal features on the whole temporal range if four
characteristic time scales are taken into account. In par-
ticular, deviations at small �t can be attributed to c scaling
differently from �. Whereas, by keeping constant T=c for
different sequences, the Dð�tÞ collapse onto a unique
master curve.
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