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Noise can induce excitable systems to make time-limited transitions between quiescent and active

states. Here we investigate the possibility that these transitions occur locally in a spatially extended

medium, leading to the occurrence of spatiotemporal patches of activation. We show that this can in fact

occur in a parameter range such that there exist (in general unstable) localized solutions of the governing

deterministic reaction-diffusion equations. Our work is motivated by a recent biological example showing

transiently excited cell membrane regions.
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Localized patterns arise in situations where the coupling
between nonlinear reactions and diffusive transport can
allow for an active region to coexist with surrounding
quiescent media [1]. These patterns can propagate, as in
the classic cases of solitons in the nonlinear Schrodinger
equation [2], or can be stationary, as initially discussed by
Koga and Kuramoto for chemical systems and further
studied by others [3–5]. In the chemical context, there
has been much theoretical and experimental work on lo-
calized structures, the former focusing on two-component
reaction-diffusion models [6] and the latter enabled by the
invention of continuously fed unstirred reactors [7]. Aside
from these, examples of localized structures have been
observed in many other experimental systems, ranging
from fluid mechanics [8] to optics [9] to granular media
[10] to vegetation [11]. However, in all the above men-
tioned scenarios the localized structures, once formed, are
either oscillatory or stationary in time, namely, the estab-
lished pattern is stable and the system does not spontane-
ously return to the homogeneous quiescent state.

In this Letter we focus on the idea of generating finite-
lifetime localized structures that we will refer to as
‘‘patches.’’ Our work is motivated by a specific biological
example to be discussed shortly, but is meant to investigate
this general issue using a generic model rather than one
specifically aimed at any particular experimental realiza-
tion. It is well known that excitable dynamical systems can
be induced to make temporally localized excursions to the
excited state by the addition of noise [12], and we here ask
the same type of question in a spatially extended excitable
medium: can noise induce a spatiotemporally localized
excursion to the excited state? We show that this is indeed
possible, as long as the system supports a (usually un-
stable) localized solution of the deterministic limit of the
equations.

First, we present the biological motivation. In the cel-
lular slime mold Dictyostelium discoideum, it has been
shown that various proteins leave the cytoplasm and attach
to the cell membrane, upon stimulation with the chemical

chemoattractant cAMP [13]. In particular, Van Haastert
and co-workers have shown [14] that uniform application
of cAMP leads, after some delay, to the spontaneous
emergence of localized regions of high protein concentra-
tion, visualized as fluorescent patches along the membrane
(Fig. 1). The patches, of sizes around 9 �m (on the two-
dimensional plane image of the cell), are closely related to
the subsequent formation of pseudopods (cell extensions).
A typical patch has a 1 min lifetime, after which it is
dismantled and eventually reappears elsewhere. When
the cell is exposed to a cAMP gradient, a single patch
will typically appear, with average size and life time which
are similar to the uniform stimulus case. Additional and
more upstream effectors were also shown to have a similar
dynamics of appearing, disappearing and reappearing [15].
It has been hypothesized [16] that this dynamics has a

FIG. 1 (color online). (a) Cell at different times after stimula-
tion with 1 �M cAMP. (b) PHCrac-GFP at the boundary, pre-
sented as the difference of fluorescence intensity between the
boundary and the cytosol, color coded as shown below in the
panel. The ordinate refers to the position along the cell with 0
indicated by the arrow in the cell image. This figure is taken with
permission from [14].
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crucial role in determining the observed cell shape and
motion.

Previous works attempted to explain the spontaneous
formation of membrane-bound patches, based on an as-
sumed Turing instability of the uniform state [17]. This
explanation does not account for the observed finite-
lifetime—once a patch is formed it is stationary and does
not spontaneously vanish. While this could be accommo-
dated by introducing ‘‘self-poisoning’’ (i.e. the patch cre-
ates another chemical species that inexorably destroys it
[18]), the question remains whether intrinsically transient
structures are possible. An alternate possibility is that these
patches are nucleated by random fluctuations acting on an
excitable system; this hypothesis forms the motivation for
the study presented here. As we show below, a spatially-
extended system can still be excitable and excursions
around an excited state can lead to the formation of
finite-time localized patterns.

To study this question we introduce a standard two-
component FitzHugh-Nagumo model consisting of
coupled equations for an activator u and an inhibitor v:

_u ¼ Dur2uþ 1

�
ð1� u2Þðu� vÞ

_v ¼ Dvr2vþ u� �vþ �
(1)

We will assume that �< 1. Without diffusion in either
species, this two-component system has three fixed points
for all values of the parameters � and �. The quiescent

fixed point at u ¼ �1, v ¼ ��1
� is always stable; the

system switches from being excitable to bistable as �
increases through unity due to a change of stability of the

fixed point with largest u; this fixed point is either at u ¼
v ¼ �

��1 or at u ¼ 1, v ¼ 1þ�
� depending on whether � is

larger or smaller than 1þ �. The unstable fixed points in
this system are typically saddles. In all subsequent simu-
lations, �x is chosen to be 0:1

ffiffiffi
�

p
and �t is chosen to be

small enough for numerical stability.
We will investigate this system in one spatial dimension.

We chose to focus on the one-dimensional case because of
the experimental motivation: In most of the relevant ex-
periments, cells are flattened (using agar or two-
dimensional microfluidic devices) so that the cell mem-
brane is practically one-dimensional. We believe that also
in higher dimensions, qualitatively similar results will be
obtained, due to the interplay between the local excitation
and the long-range inhibition.

For the standard case of more rapidly diffusing activator
Du >Dv, a localized excitation will spread as a counter-
propagating pair of pulses. We are interested here in the
opposite situation, where the inhibitor spreads more rap-
idly. In this case, one might expect the system to be able to
support localized excitations in which the creation of in-
hibitor by the localized activated region prevents propaga-
tion. We note that this scenario is common in the context of
the studied biological system. Dictyostelium cells polarize

(i.e. form a well distinguished front and back) in the
presence of a cAMP gradient as shallow as 5%. Most of
the suggested models that try to explain this phenomenon
are based on local excitation and global (or long-ranged)
inhibition [13,19]. The model we propose here is therefore
compatible with other models in the field and describes a
plausible biological mechanism.
To see if fluctuations can generate localized and tran-

sient structures, we add noise to the u equation. As already
mentioned, noise can generate excursions to the excitable
state in non–spatially extended systems and in one dimen-
sion, noise can also generate counterpropagating pulses
[20]. In order to generate nontrivial responses, the noise
magnitude needs to exceed some threshold, below which
no excursion will occur. But spatially coupling many
points with high noise magnitude leads to an overall very
noisy behavior that prevents the formation of any coherent
structures. Also, it is extremely unlikely that the noise in a
real biological system would be Gaussian and white.
Instead, we assume that the noise also arises from a (local)
excitable system and hence is spatially sparse and uncorre-
lated and lasts for a fixed time. Such punctate patterns are,
in fact, seen in nonlinear excitable processes (see [21] for
an example in a model of genetic networks). Specifically,
only a small fraction of the points (0.001%–0.01%), ran-
domly selected, are given a nonzero noise term. The non-
zero noise terms are uniformly distributed in the range
[�1, 1], and have a correlation time of 50�t, which is
much smaller than the patch lifetime.
Figure 2(a) shows that our stochastic excitable system

can indeed generate patches (defined to be regions of high
u) which are localized in time and space. These patches
have a typical width and lifetime, as can be seen in
Figs. 2(b) and 2(c), respectively, but the individual patch
sizes are distributed around this characteristic average size.
In the experimental work described above, PH-domain
patches were found to have a variability in size of about
35% (standard deviation over mean) in the case of uniform
stimulation. For the model case presented in Fig. 2 the size
variability of the patches is 30% and for the case of � ¼
0:6 a variability of 40% was obtained (data not shown).
Hence, the experimental data is consistent with this type of
stochastic process. For some cases, patches are nucleated
close enough to each other such that their inhibitory v
fields overlap. In parameter ranges where this occurs, patch
sizes are affected by the noise frequency, as it affects the
density of nucleated patches. For example, if the noise
frequency is set to be larger than the one used for
Fig. 2(a), the patches become significantly smaller due to
this mutual inhibition and vanish slightly faster. However,
for a given set of parameters patches are narrowly distrib-
uted so that typical time and space scales can be defined.
Given the existence in an excitable system of stationary

solutions, it is natural to inquire about their connection to
the patches we have seen in simulations. We therefore
construct the localized solution for the deterministic set
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of equations (1). We start from the approximate analytical
solution for small �, wherein u switches from u ¼ 1 to
u ¼ �1 over a spatial scale of order

ffiffiffi
�

p
over which v is

essentially constant. The detailed solution takes the form
[22]

u ¼ � tanhðk0ðjxj ��=2ÞÞ

v ¼ � 1� �

�
ð1� e�q0ðjxj��=2ÞÞ jxj>�=2

v ¼ 1þ �

�

�
1� coshðq0xÞ

coshðq0�=2Þ
�

jxj<�=2;

(2)

where

k0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2Du�

p ; q0 ¼
ffiffiffiffiffiffiffi
�

Dv

s
;

and the full width � is determined by

tanhðq0�=2Þ ¼ 1� �

1þ �
:

These solutions can be numerically extended to finite
values of �, as can be seen in Fig. 3(a) for the same set
of parameters as in Fig. 2(a).

The stationary pulse solutions have a limited range of
stability in �, as can be seen by direct numerical simulation
of the noise-free system. For � above and below certain
limits, the solutions exhibit a Hopf instability. For example,
for the parameter � ¼ 0:5, � ¼ 0:7, � ¼ 0:01, Du ¼ 1,
Dv ¼ 5 used in Figs. 2(a) and 3(a) the pulse solution is

stable, whereas in Fig. 3(b) (for � ¼ 0:6) the pulse solu-
tion exhibits a growing oscillation which eventually de-
stroys the excited state. The instability for small � can be
understood from the analytic solution [23]. The large �
instability on the other hand is not present in the sharp
front solution. A �-� plane phase diagram is presented in
Fig. 4(a).
It is clear that these localized pulse solutions are not

precisely connected to the patches we have seen. Most
importantly, the qualitative dynamics of the patches is the
same on both sides of the stability boundary of the pulse
solutions. Also, the pulse solution and the stochastically
created patches show a significant size difference: The
smallest patches in the stochastic simulation [Fig. 2(a)]
were of size 250 (with the average being higher yet), while
the width of the corresponding pulse solution for this set of
parameters is roughly 200, as can be seen in Fig. 3(a).
Dynamically, this occurs because the u field in a nucleated
patch expands rapidly but is eventually stopped by the
faster spreading v concentration once its kinetics kicks
in. This overexpanded u field then collapses back to the
quiescent state. In the localized solution, there is a very
carefully tuned balance between these two fields, a balance
that the dynamics apparently cannot converge to from
generic initial conditions. We have indeed verified that
the basin of attraction of a stable localized state is ex-
tremely small (data not shown). Therefore, a randomly
nucleated patch cannot converge to the pulse solution,
but will rather grow too much and then vanish when the
inhibitor v kicks in. This guarantees robustness of the
transient patches phenomenon: even when the system sup-
ports a stable pulse solution, a stochastically nucleated
patch will always be transient. Nevertheless, patches are
only seen for parameters such that an isolated pulse exists,
since outside this regime, the system gives rise to traveling
waves.
The robust transient nature of the patches might be

important in the biological context. The fact that the
membrane-bound effectors show a consistent pattern of

FIG. 3 (color online). (a) Stationary pulse solution for the
system of Eqs. (1). uðxÞ (solid blue line) and vðxÞ (dashed red
line). System parameters as in Fig. 2. (b) Deterministic simula-
tion (no noise). The stationary pulse may be stable or unstable, as
seen here for � ¼ 0:5, � ¼ 0:6, � ¼ 0:01, Du ¼ 1, Dv ¼ 6.
This stationary pulse eventually vanishes via an oscillatory
instability.
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FIG. 2 (color online). (a) Randomly created localized patches,
obtained by adding temporally correlated and uniformly distrib-
uted noise to a small number of the points (as described in the
text). The patches have a typical size and lifetime that depend on
their density. In this system �¼0:5, � ¼ 0:7, � ¼ 0:01,Du ¼ 1,
Dv ¼ 5 and noise frequency is 0.002%. (b)–(c) Patch width (b)
and lifetime (c) distribution [system parameters as in (a)].
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appearing and disappearing implies that this might be
beneficial to the cell—for example, by letting the cell
reorient and quickly respond to a change in the external
signal. On the other hand, a very stable patch on the
membrane might be harmful. From the stability diagram
in Fig. 4(a) it seems that a small change in one of the
parameters would result in switching the pulse solution’s
stability; however, as already mentioned it turns out this
change of stability has little influence on the characteristics
of the stochastic patches.

Changing parameters allows us to tune not only the size
of the patches but also their typical duration. The parame-
ter that has the largest influence on the stochastic patch is
�. Increasing � clearly makes the localized solutions more
stable, but the reduced excitability makes it much harder
(for the same noise level) to successfully create a patch.
There is at least a phenomenological correlation between
the decay time of the deterministic pulse solution (when it
is unstable) and the lifetime of the spontaneously created
patches, as can be seen in Fig. 4(b). We do not have an
analytic handle on this correlation.

As mentioned above, when the cell is subjected to a
chemical gradient only one patch is typically seen, now on
the part of the membrane with the highest concentration,
i.e., in the direction of the chemical’s source. Our model
can explain such a state quite naturally by assuming that
the excitability of the system varies in space as a response
to an external cue, controlled, for example, by the parame-
ter �. The system becomes less and less excitable as �
reaches unity and varying � in space will lead to patch
formation only in a designated area in which � is suffi-
ciently small. Reference [24] gives one example of how the
cell could use cell receptor data [25] input to a gradient
sensing model to output a spatially varying activation field.
The output of this model can also be used as an input for a
locomotion model [16].

To summarize, the model system we study in this Letter
exhibits the formation of random localized patches and

their spontaneous degradation after a typical lifetime.
This offers a possible starting point for new mechanistic
approaches to similar patterns recently seen in cells re-
sponding to chemotactic chemical stimuli. The patches are
loosely related to stationary solutions of the deterministic
equations dynamics of the system. The biological system
described here was used as a motivation to this study, and
while this simple model cannot account for the significant
cell complexity it provides a new framework for thinking
and studying the formation of transient localized patterns.
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FIG. 4 (color online). (a) Phase space for the parameters �
and �, obtained by deterministic simulations. The simulations
were typically run 108 iterations before stability was asserted.
Du ¼ 0:2, Dv ¼ 0:5, a ¼ 0:5. dx and dt were chosen as de-
scribed in the text. (b) The lifetime of the randomly created
patches is correlated with the decay time of the unstable pulse
solution.
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