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Electron interactions in undoped bilayer graphene lead to an instability of the gapless state, ‘‘which-

layer’’ symmetry breaking, and energy gap opening at the Dirac point. In contrast with single-layer

graphene, the bilayer system exhibits instability even for an arbitrarily weak interaction. A controlled

theory of this instability for realistic dynamically screened Coulomb interactions is developed, with full

account of the dynamically generated ultraviolet cutoff. This leads to an energy gap that scales as a power

law of the interaction strength, making the excitonic instability readily observable.
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Graphene, due to its unique electronic structure of a two-
dimensional semimetal, provides an entirely new setting
for investigating many-body phenomena [1]. Since the
conduction and valence band joined together in a semi-
metal mimic massless Dirac particles, electronic phe-
nomena in graphene often have direct analogs in high
energy physics [2]. In particular, several authors discussed
the analogy between excitonic instability in a single-layer
graphene and chiral symmetry breaking in 2þ 1 quantum
electrodynamics. While this instability is absent when
interactions are weak [3], and the situation for realistic
interaction strength is still debated, the instability can be
‘‘catalyzed’’ by a magnetic field [4,5]. These predictions
are in qualitative agreement with experiment [6].

The effect of interactions is drastically different for
semimetals with linear (type I) and quadratic (type II)
electron dispersion. This was recognized in an early
work [7], where the difference in behavior was traced to
the density of states at low energies, which is much lower
in type I systems than in type II systems. Electronic prop-
erties of quadratically dispersing systems are governed by
infrared divergences in Feynman diagrams, resulting in
unconventional low-energy states, whereas in linearly dis-
persing systems the free-particle description is robust.
Indeed, excitonic instability in bilayer graphene (BLG),
which has gapless quadratically dispersing electronic
states, was shown to occur for arbitrarily weak short range
repulsion [8].

In this Letter, we analyze excitonic instability in a BLG
system with 1=r interaction, focusing on a ferroelectric
(FE) state that spontaneously breaks which-layer symme-
try and polarizes the layers in charge. After accounting for
dynamically generated ultraviolet cutoff, treated in the
RPA screening framework, we find a gap which in the
weak coupling limit scales as a square of the interaction
strength, � / ðe2=�Þ2, with e the electron charge and � the
dielectric constant. This is in contrast to the exponential
BCS-like behavior of the gap expected in single layers
coupled via a dielectric spacer [9–11].

Interestingly, we find the behavior to be highly sensitive
to the specifics of screening model: log divergent diagrams

can become log2 divergent upon going from static to dy-
namic screening [see Fig. 1(b)]. Thus for a reliable esti-
mate of the gap it is necessary to properly treat dynamic
screening. We evaluate the dynamical polarization func-
tion for BLG and use it to estimate the gap value. For real-
istic parameters the predicted gap lies within the experi-
mentally accessible range. Generalizing our approach for
the antiferromagnetic (AF) states considered in [8], we find
that the AF and FE states are nearly degenerate in energy.
The formation of a gapped state will manifest itself in

strongly temperature dependent conductivity at T & �. In
the presence of long-range disorder, the gapped state will
occur at the p-n boundaries separating electron and hole
‘‘puddles,’’ making these boundaries a bottleneck for trans-
port. Hopping-like temperature dependence is indeed
noted in all conductivity measurements near the neutrality
point in BLG but not in single-layer graphene [1].
Since the ferroelectric transition breaks a Z2 symmetry,

excitonic ordering will produce domains of opposite po-
larization [see Fig. 1(a)]. In the absence of disorder, the
characteristic size of the domains L is determined by long-
range attraction between polarization in neighboring do-
mains, in analogy with ‘‘electronic microemulsion phases’’
discussed in Ref. [12], giving an estimate 8�2 lnðL=a0Þ �
�=a0, where � is polarization density and a0 is the corre-

FIG. 1 (color online). (a) Domains of opposite polarization in
the ferroelectric state. Valley polarized chiral edge states propa-
gate in opposite directions along domain boundaries.
(b) Diagrammatic representation of gap equation. First term is
vertex correction, second term is self-energy correction. Both
diagrams exhibit log2 divergence which cancel to leading order.
Solid, wavy, and thick lines represent fermion propagators, the
RPA interaction (4), and ��3 vertex, respectively.
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lation length, Eq. (3). As discussed in Ref. [13], the
boundaries between regions with opposite polarization
host valley polarized edge states. Since a two-dimensional
system with two domain types should exhibit percolation
of edge states, the FE state should be able to carry valley
currents. This could be useful for valleytronics
applications.

The low-energy Hamiltonian for BLG can be described
in a ‘‘two band’’ approximation, neglecting the higher
bands that are separated from the Dirac point by an energy
gap W � 0:4 eV [14]. The electron states are described by
wave function taking values on the A and B sublattice of
the upper and lower layer, respectively. The noninteracting
spectrum consists of quadratically dispersing quasiparticle
bands E� ¼ �p2=2m with band mass m � 0:054me. It is
convenient to introduce the Pauli matrices �i that act on the
sublattice space, and to define �� ¼ ð�1 � i�2Þ=2 and
p� ¼ px � i�py [14], where � ¼ 1 for the K valley and

� ¼ �1 for the K0 valley. The Hamiltonian may then be
written as

H0¼
X

p;�

c y
p;�

�
p2þ
2m

�þþp2�
2m

��
�
c p;�;

H¼H0þ e2

2�

X

x;x0

nðxÞnðx0Þ
jx�x0j ; nðxÞ¼X

�

c y
�ðxÞc �ðxÞ:

(1)

The sum over � indicates summation over N ¼ 4 spin and
valley species, while the dielectric constant � incorporates
the effect of polarization of the substrate and of the higher
bands of BLG. The interaction is invariant under SUðNÞ
rotations in spin-valley space. We also approximate by
treating the interlayer and intralayer interaction as equal,
and defer discussing the effect of finite layer separation
until after we present our main result.

We investigate stability of the gapless state by introduc-
ing a test gap-opening perturbation ��3 into the noninter-
acting Hamiltonian, where � must be real, but may take
either sign. This test perturbation explicitly breaks the Z2

layer symmetry of the Hamiltonian, and corresponds to a
ferroelectric instability that polarizes the layers by charge.
We develop our analysis perturbatively in the interaction,
and calculate the interaction renormalization of the ��3
vertex. At leading order in weak bare interactions, the
vertex correction in Fig. 1(b) takes the form �� ¼ �3��,
where

�� ¼ �
Z �

ðiEþH0ÞðiE�H0ÞU: (2)

Here H0 is the Hamiltonian of the noninteracting system
evaluated at � ¼ 0. The vertex correction is positive and
preserves the form of the �3 vertex. Moreover, simple
power counting shows that the vertex correction is diver-
gent in the infrared for any form of interaction U, screened
or unscreened. The infrared divergence indicates instabil-
ity even for arbitrarily weak interactions (unlike monolayer
graphene). The infrared divergence is power law whenU is

the unscreened Coulomb interaction; therefore, it is im-
portant to include screening even at weak coupling, to
moderate the infrared divergence.
We now introduce the interaction energy scale E0 and

the corresponding length scale a0, defined as

E0¼ me4

�2
@
2
�1:47

�2
eV; a0¼ �@2

me2
���1:1 nm: (3)

For simplicity, we take the weak coupling limit E0 & W,
and neglect interaction-induced mixing of the low-energy
states with the higher bands [for discussion of mixing see
Ref. [15] ]. Moreover, when U is the unscreened or dy-
namically screened Coulomb interaction, the integral in
Eq. (2) is convergent in the ultraviolet limit, without the
need for any high energy cutoff. Thus E0 emerges as the
only energy scale in the problem. This then implies that the
energy scale for the gap must scale as a power law in
electric charge �� E0 � e4.
As we shall see, it is necessary to properly treat dynamic

screening to obtain a reliable estimate for the gap. We
therefore take U in Eq. (2) to be the dynamically screened
Coulomb interaction, defined as

~U!;q ¼ 2�e2

�q� 2�e2N�!;q

: (4)

Here we have introduced the single species polarization

function �!;q ¼ �R
Gðpþ; "þÞGðp�; "�Þ d"d2pð2�Þ3 , where

we use the notation p� ¼ p� q=2 and "� ¼ "�!=2,
and define the imaginary frequency Green function in
terms of the noninteracting Hamiltonian H0 as
G�1ðE;p;�Þ ¼ iE�H0ðp;�Þ. Hence, we obtain

�!;q;�¼�2
Z dEd2p

ð2�Þ3
EþE��p2þp2�cosð2	pqÞ��2

ðE2þþp4þþ�2ÞðE2�þp4�þ�2Þ :
(5)

Here, 	pq is the angle between the vectors pþ and p�. To
determine the dynamically screened interaction, it is suffi-
cient to determine the polarization function in the un-
gapped state. We therefore suppress � in Eq. (5),
integrate over frequencies by residues, and scale out q.
The integral then depends on a single dimensionless pa-
rameter ~! ¼ 2m!=q2, and may be evaluated analytically
by integrating over momenta in polar coordinates [16].
This gives an exact expression for the polarization function
�!;q;0 ¼ � m

2� fð ~!Þ, where

fð ~!Þ¼2tan�1 ~!� tan�12 ~!

~!
þ ln

~!2þ1

~!2þ 1
4

� ln4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu ~!2

p ; (6)

where u ¼ ð2 ln4=�Þ2. The right-hand side provides an
approximate formula that reproduces fð ~!Þ exactly for
~! ! 0 and ~! ! 1, interpolating accurately between the
two limits. Result (6) agrees with the polarization function
found in [17] continued to Matsubara frequencies.
The vertex correction, Eq. (2), calculated with the dy-

namically screened interaction, Eq. (4), is log2 divergent in
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the infrared [16]. The enhanced divergence arises from the
phase space region !=q2 � 1, where the Coulomb inter-
action is not efficiently screened. However, it is also nec-
essary to take account of the self-energy correction, so that
the full gap equation is represented by Fig. 1(b). In par-
ticular, the self-energy undergoes a log2 renormalization
[18], and this can be shown to cancel the vertex correction
at log2 order, leaving a residual logarithmic divergence.

Since demonstrating the cancellation of the self-energy
and vertex correction at leading log2 order and extracting
the subleading logarithmic divergence is fairly tedious, we
employ an alternative scheme for solving the gap equation
Fig. 1(b). We note that calculating the free energy of BLG
as a function of �, at leading nonvanishing order in �,
simply produces the diagrams in Figs. 2(a)–2(c). Upon
minimizing with respect to �, this yields the gap equation,
pictured in Fig. 1(b), with correct combinatorial coeffi-
cients. Minimizing the free energy of BLG with respect
to � is therefore formally equivalent to solving the gap
equation, and is technically simpler. It may be verified that
while Figs. 2(b) and 2(c) are individually log3 divergent in
the infrared, their sum is only log2 divergent. This is the
same leading order cancellation of divergences that is
manifested by the gap equation, Fig. 1(b).

We approximate by assuming that the gap function � is
static and momentum independent up to energies of order
E0, on the grounds that the screened interaction in the
particle-hole channel depends only weakly on the trans-
ferred momentum. We evaluate the kinetic energy change
�T represented by Fig. 2(a) by including � in the fermion
Green function. We find, with logarithmic accuracy, �T ¼
m
2��

2 lnð�=�Þ, with the cutoff �� E0.

To calculate the exchange energy gain, we note that the
difference in interaction energy between the gapped and
ungapped states, �E ¼ Eð�Þ � Eð0Þ is given, within the
RPA approach, by

�E ¼
Z d!d2p

ð2�Þ3 ln½1� N ~U!;qð�!;q;� ��!;q;0Þ�: (7)

Here, ~U!;q is the interaction (4) and �!;q;� is the single

species polarization function in the gapped state. The
problem thus reduces to that of evaluating the polarization
function at finite �.
We calculate the quantity �� ��0 by integrating

Eq. (5) over frequencies by residues, Taylor expanding to
leading order in small �2, and analytically performing the
integration over momenta, assuming as before that � is
independent of momentum. After some algebra [16], we
obtain

�� ��0 ¼ m�2

2�r2

�
�7

q4

r2
þ 4

q8

r4

�
ln
r

�
: (8)

We are using the notation r2 ¼ !2 þ q4.
We now evaluate the exchange energy gain from gap

formation by substituting Eq. (8) into Eq. (7), and perform-
ing the integrals using polar coordinates [16]. Combining
this with the kinetic energy cost �T, we find the free energy
associated with gap opening

Fð�Þ ¼ m

2�
�2 lnð�=�Þ � 13m�2

6�3
ln2ðN2E0=�Þ: (9)

We note the expected emergence of a natural ultraviolet
cutoff. Identifying � with N2E0, and minimizing Eq. (9)
with respect to �, we obtain, with logarithmic accuracy,

� ¼ N2E0 expð�3�2N=13Þ: (10)

We emphasize that E0 appears only outside the exponen-
tial, making � a power law function of interaction strength
at weak coupling. However, � is exponentially small in N,
where N is the number of fermion species participating in
screening. If we had worked instead with static screening,
we would have obtained �� N2E0 expð�2N ln4Þ, and
would have underestimated the size of the gap by an order
of magnitude.
For N ¼ 4 Eq. (10) gives � � 10�3E0 � 1:5��2 meV,

up to a numerical prefactor of order unity. Meanwhile,
numerically evaluating the integrals in Eq. (7) and the
kinetic energy contribution �T [Fig. 2(a)], and minimizing
the free energy gives � � 4��2 meV. This number lies
within experimentally accessible range, although it can be
reduced by screening in the substrate, by doping, or by
disorder induced density inhomogeneity.
Thus far, we have neglected the effect of trigonal warp-

ing which leads to deviation of particle dispersion from a
simple quadratic dependence, causing an overlap of the
conduction and valence bands. Trigonal warping can pro-
vide an alternative low-energy cutoff, preventing formation
of a gapped state if its size exceeds the estimated gap.
Since the upper estimate for trigonal warping, 1.5 meV
[19], is less than the numerical estimate � � 4��2 meV,
the effect of trigonal warping should be inessential, at least
for suspended bilayers (� � 1).

FIG. 2 (color online). Free energy change from gap formation
at leading order in � and in the interaction (notation the same as
in Fig. 1). The diagrams may be interpreted as (a) kinetic energy
cost from spontaneous gap opening; (b),(c) interaction energy
gain from gap opening; (d) Hartree energy cost of layer polar-
ization, which vanishes within the approximations of Eq. (1).
Here V� is the difference between interlayer and intralayer
interactions. While all these diagrams are nominally Oð�2Þ, �
also appears as a logarithmic infrared cutoff in each diagram,
Eq. (9).
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Our analysis can be easily generalized to any state that
adds a term ��3� to the Hamiltonian (1), where � is a
4� 4 Hermitian matrix in spin and valley space satisfying
�2 ¼ 1. The FE state considered above corresponds to
� ¼ 1, whereas the AF states discussed in Ref. [8] are
characterized by � ¼ �3 � 1 or � ¼ 1 � 
3, where �3

and 
3 are Pauli matrices in spin and valley space, respec-
tively. All these inequivalent choices for � yield the same
mean field free energy Fð�Þ, Eq. (9), and the same gap
value as was obtained for the FE state. This mean field
degeneracy occurs because the Hamiltonian is invari-
ant under SUð4Þ spin-valley rotations, within validity of
Eq. (1), while the states corresponding to different choices
of � differ only in their spin and valley structure [22].

We now examine the effect of finite layer separation d �
3 �A, which differentiates the interlayer and intralayer in-

teractions, giving an anisotropy V� ¼ 1
2 ðVAA � VABÞ ¼

1
2
2�e2

q ð1� e�qdÞ ¼ �e2d. This anisotropy is small, be-

cause d 	 a0. The leading order effect of finite layer
separation is to introduce a Hartree energy for the states
that polarize the layers in charge [see Fig. 2(d)],

EHartree ¼ Nm2

4�2
V��2ln2ð�=�Þ: (11)

It was argued in Ref. [19] that this contribution prevents
formation of the ferroelectric state. However, Ref. [19]
neglected the exchange energy. We note that the Hartree
energy is of the same functional form as the exchange
energy, Eq. (9), but is parametrically smaller by d=a0 	
1, and so cannot prevent the instability.

Upon going beyond the weak coupling approximation,
d=a0 ceases to be a good control parameter, but our con-
clusions remain unchanged. This is because the V� inter-
action is screened as ~V� ¼ V�=ð1� V���Þ, where

�� ¼ R
TrGð"þ; pþÞ�3Gð"�; p�Þ�3 d"d2p

ð2�Þ3 � m
2� lnð�=�Þ.

Such logarithmic screening ensures that the Hartree energy
remains smaller than the exchange energy, Eq. (9), and so
cannot prevent gap formation. However, when d=a0 is not
small, the Hartree energy may tip the balance from the FE
state to one of the AF states, which do not polarize the
layers by charge.

A ferromagnetic instability was predicted for
unscreened interactions in [17]. However, the free energy
gain from ferromagnetism was only cubic in the ferromag-
netic order parameter. In contrast, the excitonic states all
have a free energy gain of Oð�2Þ, and should thus domi-
nate for weak coupling.

To conclude, we have demonstrated that electron inter-
actions drive BLG to a gapped state. For dynamically
screened Coulomb interactions, taking proper account of
dynamically generated ultraviolet cutoff and log2 diver-
gences arising in this case, we obtain a gap value in
experimentally accessible range (� � 4��2 meV).
Manifestations of the energy gap-opening in BLG at

charge neutrality include temperature dependent transport
at low temperatures, and also valley polarized chiral edge
states propagating along domain boundaries.
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Note added.—Recently we became aware of works

[20,21]. Instabilities in BLG are analyzed in these papers
within a renormalization group framework, with interac-
tions modeled as being short range. It is found that differ-
ent choices of short range interaction can result in different
states, gapped [20] or gapless [21].
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