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We analyze the entanglement spectrum of Laughlin states on the torus and show that it is arranged in

towers, each of which is generated by modes of two spatially separated chiral edges. This structure is

present for all torus circumferences, which allows for a microscopic identification of the prominent

features of the spectrum by perturbing around the thin-torus limit.
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Introduction.—The description of condensed matter
phases using entanglement measures, borrowed from the
field of quantum information theory, has led to an explo-
sive growth of interdisciplinary work [1]. Despite all this
interest, there are few cases where entanglement concepts
provide physical information that is not obtainable through
more conventional quantities, such as correlation func-
tions. One example involves topologically ordered states,
for which bipartite entanglement measures have been
shown to be useful probes [2–4]. Fractional quantum
Hall (FQH) states of two-dimensional electrons in a mag-
netic field stand out as experimentally realized topologi-
cally ordered phases, and have recently received renewed
intense attention partly due to quantum computation pro-
posals based on their topological properties [5]. An intri-
guing feature of FQH states is that their edges have gapless
modes, described by chiral Luttinger liquids [6,7]. In this
work, we study the interplay of two edges, through the
study of entanglement spectra.

We focus on bipartite entanglement between two parts
(A and B) of the system. The entanglement spectrum (ES),
f�ig, is defined in terms of the Schmidt decomposition

jc i ¼ X
i

e��i=2jc A
i i � jc B

i i:

Here, jc i is the ground state, and the states jc A
i i (jc B

i i)
form an orthonormal basis for the subsystem A (B).

Very recently, ES studies have been used [4,8] to probe
edge modes of FQH states. The entanglement between two
partitions of an edgeless wave function may seem at first
sight unrelated to edge physics. However, studies of ES in
noninteracting systems [9,10] have found that the entan-
glement spectrum is also the spectrum of an effective
‘‘entanglement Hamiltonian’’ confined to the A region of
space, which is not identical but similar to the original
physical Hamiltonian. If this similarity holds for interact-
ing systems, the low-lying ES would then show an edge
structure, even though the total system has no edge.
References [4,8] analyzed the ES of FQH states on the
sphere with hemispheric partitioning. The Virasoro multi-
plet structure of the conformal field theory (CFT) describ-
ing the edge appear in the low-lying part of the ES.

In this Letter, we present and analyze the entanglement
spectrum of � ¼ 1=3 Laughlin states on the torus. This
choice of geometry gives us access to new physics and new
analysis tools, compared to the spherical case. The natural
partitions of the torus are cylinderlike segments with two
disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show
that this leads to ‘‘towers’’ in the ES spectrum, when
plotted against appropriate quantum numbers. Even in
cases where the two edges have different spectra, the two
spectra combine to form towers. The two-edge picture
provides significant predictive power, as the assignment
of only a few edge mode energies enables us to construct
the remaining ES.
The torus geometry also allows us to adiabatically con-

nect to the ‘‘thin-torus’’ limit, which is exactly solvable
[11,12] and has as ground states the Tao-Thouless crystal-
line states [13]. Many features of the ES can be understood
starting from these simple states, such as the positions of
towers and relationships between their energetics. The
CFT tower structure persists even very close to the thin-
torus limit, which by itself is an uncorrelated product state.
Geometry and partitioning.—We study an N-electron

system on a torus with periods L1, L2 in the x and y di-
rections, satisfying L1L2 ¼ 2�Ns (in units of the magnetic
length). Here, Ns ¼ N=� is the number of magnetic flux
quanta. In the Landau gauge, A ¼ Byx̂, a basis of single

FIG. 1 (color online). Torus setup for block entanglement
computations. The lowest Landau level is spanned by orbitals
which in Landau gauge are centered along the circles shown.
The arrows indicate the chiralities of the virtual ‘‘edges’’ created
by the block partitioning.
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particle states in the lowest Landau level can be taken as

c j ¼ ��1=4L�1=2
1

P
me

i½ð2�=L1ÞjþmL2�xe�½yþð2�=L1ÞjþmL2�2=2

with j ¼ 0; 1; . . . ; Ns � 1. The states c j are centered along

the lines y ¼ �2�j=L1 (Fig. 1). Thus, the y position is
given by the x momentum j.

Any translation-invariant two-body interaction Hamil-
tonian, acting in the lowest Landau level, can be written as

H ¼ X
n

X
k>jmj

Vkmc
y
nþmc

y
nþkcnþmþkcn; (1)

where cym creates an electron in the state c m and Vkm is the
amplitude for two particles to hop symmetrically from
separation kþm to k�m. Hence, the problem of inter-
acting electrons in a Landau level maps onto a one-
dimensional, center-of-mass conserving lattice model with
lattice constant 2�=L1. The Laughlin states at � ¼ 1=3
are, for all L1, the unique zero energy grounds states of the

pseudopotential interaction Vð1Þ
km¼ðk2�m2Þe�2�2ðk2þm2Þ=L2

1

[11]. For generic interactions, e.g., the Coulomb interac-
tion, the matrix elements have a more complicated L1

dependence. Our ES data are extracted from ground states
of (1), obtained using the Lanczos algorithm for numerical
diagonalization.

We bipartition the system into blocks A and B which
consist of lA consecutive orbitals and the remaining Ns �
lA orbitals, respectively (Fig. 1). Since the orbitals are
localized, this is a reasonable approximation to spatial
partitioning, as on the sphere [4,8,14,15]. In this Letter,
we focus on half-partitioning, lA ¼ Ns=2, and organize the
ES in sectors labeled by the particle number, NA, and the
total x momentum, KAmodNs, in the A block.

The � ¼ 1=3 Laughlin state is threefold degenerate on
the torus. The degenerate states are related by translation,
and correspond to three different thin-torus configurations:

010 j010010 j010
100 j100100 j100
001 j001001 j001

:

These states are, for generic (including Coulomb and
pseudopotential) interactions, adiabatically connected to
the bulk ground states without gap closing for any L1

[11,12]. If the A partition is taken to be the six middle
orbitals, the block boundaries are different for the three
cases: 0-0 cuts in the first case (‘‘symmetric cut’’), a 1-0
and a 0-1 cut in the other two (‘‘asymmetric cuts’’).
Tower structure and CFT identification.—Numerical ES

are shown in Fig. 2 for a 12-particle Laughlin state (Ns ¼
36). A prominent feature is that the ES consists of ‘‘tow-
ers.’’ Most of the towers are symmetric, while some are
skewed. We interpret each tower as a combination of chiral
modes of two edges (two block boundaries). An ad hoc
assignment of a small number of (Virasoro) energies pro-
vides the necessary input for constructing each tower.
The number of independent modes of a chiral Uð1Þ CFT

at momentum k is given by the partition function pðkÞ ¼
1; 1; 2; 3; 5; 7; 11; . . . for k ¼ 0; 1; 2; . . . . When two linearly
dispersing chiral modes combine, one expects an ideal
tower of states like the one shown in Fig. 2 (inset). The
diagonal sequences along the left and right sides are from
the individual edges, and so have degeneracies pðj�KAjÞ at
momentum shifted by �KA from the tower center. A right-
moving mode at energy E1 and momentum k1 and a left-
moving mode at E2 and momentum �k2 will combine to
give a mode at energy E1 þ E2 and momentum k1 � k2.
The rest of the tower is obtained from the states of the two
edges through such combinations. Here, energies are mea-
sured with respect to the vacuum state at �KA ¼ 0.
The observed towers in the numerical ES can be ex-

plained by postulating the individual edge spectra to have
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FIG. 2 (color online). Entanglement spectrum for Ns ¼ 36 and L1 ¼ 10. Left panels show the symmetric cut and right panels show
one of the asymmetric cuts. The origin of KA is chosen to match the Tao-Thouless state. The blue squares represent numerically
obtained data. The assigned edge modes are labeled by black dots while the combinations of those edges are marked by red crosses.
The script letters are microscopic identifiers for the two edges combining to form each tower (see text). The striking correspondence of
the red crosses with numerical data shows that our algorithm based on the two-edge picture allows the reconstruction of the entire
entanglement spectrum using only the positions of the black dots. The inset shows a CFT tower formed by two ideal chiral edges, the
states labeled with their degeneracies.
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split degeneracies while preserving the Virasoro counting.
Two such modified edge spectra can be combined to con-
struct towers which are less degenerate than the ideal case
of Fig. 2 (inset). Following this scheme, for the numerical
ES towers (Fig. 2), we assigned appropriate levels on the
right and left of each tower to single-edge spectra. Several
edges in the NA � N=2 sectors are identical to edges in the
NA ¼ N=2 sector, and thus do not need to be independently
assigned. As a result, the energies of a remarkably small
number of single-edge states (black dots in Fig. 2) are
sufficient to generate the entire ES. This is a key result of
the present work.

The assigned single-edge levels have robust relative
positions for varying torus thickness [Fig. 3(a)]. The rela-
tive positions correspond well to the single-edge levels
extracted from ES on a sphere [15], as shown in Fig. 3(a).

Microscopic ‘‘thin-torus’’ analysis.—The adiabatic con-
nection to the thin-torus (L1 ! 0) limit enables us to
understand features of the ES by perturbing the solvable
limit. In particular, the location and energetics of towers
can be understood from such microscopic considerations.

We first consider the symmetric cut and explain the
towers in the left panels of Fig. 2. The very lowest ES level
is found at KA ¼ 0 in the NA ¼ 6 sector (left bottom
panel), and corresponds to the thin-torus configuration

010010010 j 010010010010010010|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

j 010010010:

At L1 ¼ 0, this amounts to the only entanglement level,
and for all finite L1, its dressed counterpart remains at the
very bottom of the main tower. The remaining states of this
tower are all generated from this by Vkm processes [Eq. (1)]
which conserve NA. In particular, the leading levels are
generated by processes with small k andm. For example, a
V21 process at the right edge, 0010j0100 ! 0001j1000,
gives the root configuration for the lowest entanglement
level at�KA ¼ 1, and at the left edge, this gives the lowest
�KA ¼ �1 level. The energetics of the tower is deter-

mined by the microscopic structure of its edges. We refer
to this particular environment, 10010j01001, and the cor-
responding edge energetics as A.
Some processes do not conserve NA. For the symmetric

cut, the leading such process is V42 which can change NA

by �1: 0010j01001 ! 0000j1110. We call such an edge
environment B, which combines with A type edges to
form the observed A-B and B-A towers in the NA ¼ 5
sector. Mirror images of these exist in the NA ¼ 7 sector.
By creating twoB edges, one finds that there are two ways
of obtaining theB-B tower in theNA ¼ 6 sector, each with
momentum shift �lA (¼� Ns=2) compared to the main
tower. The extra twofold degeneracy is seen in our data.
The large momentum transfer is because a particle leaves
block A at one cut, and one enters A at the opposite cut. We
also predict and observe a nondegenerateB-B tower in the
NA ¼ 4 sector (not shown).
We now turn to the asymmetric cut (right panels of

Fig. 2). Again, the thin-torus ground state corresponds to
the lowest level in the main tower (at KA ¼ 0 in the NA ¼
6 sector). The two edges, 0100j1001 and 1001j0010, are
both denoted A0 as they are each others’ mirror images
and hence have equivalent energetics. In this case, already
the leading hopping term, V21, changes NA leading to the
B0 edge, 0100j1001 ! 0011j0001. Another edge C0 is
generated by the V54 process, 1001001j001001 !
0001111j000001. A feature of the ES for the asymmetric
cut is that the skewed towers within a given NA sector do
not in general have mirror image in that sector. Instead, the
mirror images show up in the (N � NA) sector. Note that
the energy of the lowest �KA ¼ 0 state for each tower
(tower vacuum energy) is also fixed by the two edges.
Pursuing the microscopic analysis, one can find many

nontrivial relations between the energetics in different
towers, cuts, and sectors; we have only outlined the basics.
It is also possible to derive more quantitative features of the
ES as a function of L1, through perturbative calculations
starting at the thin-torus limit. Details will be explored
elsewhere.
Circumference and size dependence.—We illustrate the

roles of Ns and L1 by focusing on the four lowest levels of
the A-A tower, which form a diamond shape (e.g.,
Fig. 4). The ratio of the energy of the second �KA ¼ 0
level to the first �KA ¼ 1 level, each measured from the
lowest�KA ¼ 0 level, is an ‘‘aspect ratio’’ for the diamond
shape, and is plotted in Fig. 3(b). Both the two-edge CFT
picture and perturbation from the thin-torus limit predict
aspect ratio ¼ 2. This is seen to hold from the thin-torus
limit up to some threshold value of L1, which increases as
Ns is increased. This situation is generically true for all
CFT features: although the Laughlin state converges to
CFT behavior at any L1; at larger circumferences, more
particles are required for finite-size convergence.
For large L1 and finite Ns, the edges are close and

therefore interact, leading to complicated effects such as
the aspect ratio deviations seen in Fig. 3(b).
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FIG. 3 (color online). (a) The chiral edge levels (type A)
identified from ES, as a function of torus thickness L1. The
rectangle contains the single-edge ES levels in spherical geome-
try [15], here scaled and shifted for best comparison with the
torus results around L1 � 14. (b) ‘‘Aspect ratio’’ of the diamond
formed by the four lowest ES levels of the A-A tower. The
value 2 means a perfect diamond shape.
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Coulomb ground states.—The ES for ground states of
the Coulomb Hamiltonian have more complicated L1 de-
pendence (Fig. 4). At smaller L1, only the few lowest levels
resemble the Laughlin ES; for L1 & 8, the Coulomb ES
cannot be generated using the two-edge procedure beyond
the diamond structure. This does however not contradict
the larger overlap between Laughlin and Coulomb states
known at L1 ! 0 [11,16] because the higher ES levels are
pushed upwards at small L1 (cf also Fig. 4). The ES thus
exposes correlations much more subtle than is visible in
overlap considerations. As L1 is increased, more and more
Coulomb ES levels match the Laughlin ES, and the emer-
gent CFT tower structure can be seen.

Discussion.—This work presents entanglement spectra
calculated through numerical diagonalization, for the
Laughlin state at � ¼ 1=3 on a torus. We presented two
radically different physical ways of understanding the ES
structure. The first interpretation is based on a combination
of two chiral CFT edges. Each of these is individually
similar to the edge spectrum previously extracted from
ES studies on the sphere [15]. This interpretation is power-
ful as it reproduces the entire ES through the assignment of
a few levels. Our second approach uses the adiabatic con-
nection to the thin-torus limit, and the remarkable fact that
the two-edge CFT structure is preserved even close to the
thin-torus limit. Perturbative analysis based on the simple
thin-torus states yields the locations and shapes of the
towers, and many other quantitative predictions.

Accessing edge modes in explicit numerical calculations
remains a highly desired but difficult task, due to edge
reconstruction and other difficulties [7]. Our study of edge
combinations through entanglement calculations provides
an alternative track to gaining insight into this issue.

Our work opens up several important research direc-
tions, of which we list a few. We expect our results to
have interesting generalizations to more intricate FQH
states, such as the non-Abelian states.
Our data at large L1 deviates from the independent-

edges picture because the edges are close. The present
setup thus provides the intriguing possibility of studying
the interaction and interferences between two spatially
separated edges, e.g., through exploring large L1 features
as in Fig. 3(b).
The CFT edge interpretation relies on the idea that the

‘‘entanglement Hamiltonian’’ is similar to the physical
Hamiltonian. This notion is plausible but entirely unex-
plored for FQH states. There is thus a clear need for
constructing and understanding entanglement Hamilton-
ians. It is also possible that a more detailed study of the
CFT towers in the ES could yield Luttinger liquid features
such as the compactification radius and more generally the
scaling dimensions.
We acknowledge ZIH TU Dresden and MPG RZ
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FIG. 4 (color online). Comparison of the entanglement spec-
trum, and overlaps, between the Laughlin wave function and the
Coulomb ground state for L1 ¼ 6; . . . ; 14 at fixed Ns ¼ 36. Only
the central part of the most prominent tower for the symmetric
cut is displayed. We observe that the entanglement spectra of the
two wave functions become very similar for sufficiently large L1.
The appearance of ‘‘generic levels’’ beyond the two-edge CFT
picture in the Coulomb state is indicated by the shaded regions,
leading to a tentative notion of ‘‘entanglement gap’’ [4].
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