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We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q

whispering-gallery-mode resonator made of lithium niobate. A conversion efficiency of 9% is achieved at

30 �W in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is

almost 2 orders of magnitude lower than the state-of-the-art value. This suggests an application of our

frequency doubler as a source of nonclassical light requiring only a low-power pump, which easily can be

quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering-gallery-mode

resonator provides the relative conversion efficiencies for frequency doubling in various modes.
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Various types of oscillations can be enhanced by appro-
priate resonators. Examples range from resonating cham-
bers for sound waves to cavities for electromagnetic waves.
Nonlinear cross-coupling of different oscillations can be
enhanced as well, e.g., between optical waves, between
optical and radio-frequency electromagnetic waves, and
between mechanical and optical oscillations [1].

A resonator of particular interest in the context of quan-
tum and nonlinear optics is the whispering-gallery-mode
resonator (WGMR). In WGMRs, light is guided via con-
tinuous total internal reflection. The small mode volume
combined with the absence of external reflecting elements
provides for a very high quality factor Q and good spatial
localization of the optical fields. Moreover, the WGMR
enables us to continuously control the coupling strength
between the intracavity modes and the modes outside the
cavity. This capability may be compared to a cavity mirror
with continuously variable reflectivity.

Because of these unique capabilities, various nonlinear
processes have been observed in WGMRs, including four
wave mixing [2–5], Raman [5,6], parametric [7] and
Brillouin [8] scattering, microwave upconversion [9], sec-
ond [10] and third [11] harmonic generation. Furthermore,
a plethora of dynamic effects has been predicted and
observed in the cavities with the second order nonlinear
response, examples being bistability, chaotic behavior, and
self-pulsing [12], along with nonclassical effects such as
squeezing and entanglement [13]. It is intriguing to inves-
tigate these effects in a highly efficient WGMR.

In this Letter we report on the second harmonic (SH)
generation in a doubly resonant WGMR. We employ non-
critical type-I phase matching, and achieve the SH conver-
sion efficiency of 9% at 30 �W pump power. This is nearly
2 orders of magnitude higher than the previous state-of-
the-art result for the same pump power, obtained with a less

efficient quasi–phase matching [10]. At higher pump
power, the conversion efficiency saturates.
The phase-matching conditions for SH and degenerate

parametric down-conversion (PDC) reflect the conserva-
tion laws associated with the resonator symmetries. They
arise from the interaction Hamiltonian

Hint ¼
Z

�ð2ÞEsðEy
pÞ2dV þ H:c: (1)

expressed via the effective quadratic nonlinearity �ð2Þ and
the pump and SH positive frequency electric field operators
Ep and Es. In Cartesian coordinates, the integral in (1)

gives rise to three momentum conservation equations:

2 ~kp ¼ ~ks. In a spherical WGMR, a mode is defined by a

set of polar, azimuthal, and radial numbers fL;m; qg.
Assuming that the WGMR radius R is much larger than
the optical wavelength �, such that there is no coupling
disturbance, and that the WGMs are near equatorial, we
can reduce the electric fields in both polarizations to a
scalar eigenfunction [14] with a scaling factor E0:

ELmqðr; �; �Þ ¼ E0YLmð�;�ÞjLðkLqrÞ: (2)

The angular part of (2) is a spherical harmonic

YLmð�;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1ÞðL�mÞ!

4�ðLþmÞ!

s
Pm
L ðcos�Þeim�; (3)

where Pm
L ðcos�Þ are the associated Legendre polynomials.

The radial wave number kLq in the argument of the spheri-

cal Bessel function jLðkLqrÞ relates the WGM eigenfre-

quency ! to L and q via the dispersion equation

kLq ¼ !
n

c
¼ L

R
½1þ �qð2L2Þ�1=3 þOðL�1Þ�; (4)
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where n is the material index of refraction and�q is the qth

zero of the Airy function [14,15].
Applying (1) to the angular part of (2) yields the

Clebsch-Gordan coefficients whose subscripts s and p
refer to the pump and the second harmonic, respectively:

hLp; Lp;mp;mpjLs;msi ¼
Z

Y�
Lsms

ð�;�ÞY2
Lpmp

ð�;�Þ
� sin�d�d�: (5)

Selection rules for Clebsch-Gordan coefficients are

ms ¼ 2mp; Ls � 2Lp: (6)

The first condition in (6) is conservation of the azimuthal
component of the orbital momentum, while the second one
arises from the triangular condition for a vector sum of the
orbital momenta of two pump photons. The phase-
matching conditions for the SH generated on a surface of
a spherical WGMR have been already construed as the
addition rules for the orbital momenta [14]. This also
applies to our WGMR, and the Clebsch-Gordan factors
(5) in the conversion efficiency emphasize the analogy
with atomic systems. Notice that a spectrum of a spherical
WGMR (4) is degenerate with respect to m, which decou-
ples the first selection rule of (6) from the frequency-
doubling resonance condition

!s ¼ 2!p (7)

and makes the phase matching easier to satisfy.
The relative SH conversion efficiencies for different

WGMs are found from Eq. (5) using Gaunt’s formula
[16] and treating large factorials in Stirling’s approxima-
tion. Remarkably, for L and m sufficiently large for dis-
persion Eq. (4) to remain a good approximation (which is
the case in our experiment), the coefficients (5) normalized
to hm;m;m;mj2m; 2mi are practically independent of m
and therefore of R and �. This normalization coefficient
describes nonlinear coupling of two equatorial modes
(L ¼ m). The equatorial modes have a single antinode at
� ¼ �=2 and therefore yield the best coupling of the
WGMR with the free-space modes, as well as the best
overlap with other equatorial modes. To describe nonequa-
torial modes, we introduce �p � Lp �mp � 0 and �s �
Ls �ms � 0. The normalized Clebsch-Gordan coeffi-
cients are shown in Fig. 1. From this figure we see that
the second selection rule of (6) breaks the symmetry be-
tween the SH and degenerate PDC processes. While the
former can couple an equatorial pump only to another
equatorial mode, the latter can couple the equatorial
pump to a variety of modes.

The radial part of integral (1) with substituted (2) and (4)
is evaluated approximating the large-order Bessel func-
tions by Airy functions. The results are normalized to the
f!p; qp ¼ 1g ! f2!p; qs ¼ 1g coupling coefficient, and

shown in Fig. 2. These coefficients are practically indepen-
dent of Lp and Ls and therefore of R and �. The relative

efficiencies of different conversion channels
f!p; Lp;mp; qpg ! f2!p; Ls; 2mp; qsg are found as a prod-
uct of squares of coefficients from Figs. 1 and 2.
Our experimental setup is shown in Fig. 3. The WGMR

is made from a congruent 5% MgO-doped lithium niobate
z-cut wafer. Its radius is R ¼ 1:9 mm and height is ap-
proximately 0.5 mm. The rim of the disk is polished into a
tapered shape that near the equator can be approximated as
a spheroid with radii R and 	. Their ratio R=	 � 7:5 is
nearly optimal [9] for coupling of the horizontally polar-
ized pump.
The pump is a free-space Gaussian beam from a con-

tinuous wave Nd:YAG laser (InnoLight Mephisto) with a
wavelength of 1064 nm. It is focused by a microscope
objective onto the back side of a diamond prism at an
angle that allows for total internal reflection. The resonator
is placed near the reflected beam’s footprint, so that the
coupling occurs via frustrated total internal reflection. The
coupling is varied by changing the gap between the prism
and the resonator rim. The disk and the prism are mounted
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FIG. 1 (color online). Normalized Clebsch-Gordan coeffi-
cients hmþ�p;mþ�p;m;mj2mþ�s;2mi=hm;m;m;mj2m;2mi.
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FIG. 2 (color online). Normalized absolute-value coupling co-
efficients for frequency doubling f!p; qpg ! f2!p; qsg.
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on a hot plate whose temperature is stabilized. The hori-
zontally polarized pump couples to the ordinary polarized
modes of the resonator, and the vertically polarized SH is
generated into an extraordinary polarized mode. Light
coupled out of the disk is recollimated by another objec-
tive, and the fundamental and the SH components are
separated by a dichroic mirror and focused onto photo-
detectors. Finally, the signals are monitored by an
oscilloscope.

Scanning the laser frequency we observe the pump
transmission, which reveals the WGM spectrum at the
fundamental wavelength (see Fig. 4). Fitting the reso-
nances with a Lorentzian function we find a minimal
linewidth 
 ¼ 8:3 MHz, (Q ¼ 3:4� 107), and a maxi-
mum contrast of 90%, for a critically coupled resonator.

An electrode attached to the disk allows us to apply a
bias voltage to the resonator. The bias shifts the ordinary
(pump) and extraordinary (signal) mode frequencies !p

and !s differently, proportionally to the electro-optic co-
efficients r31 and r33 � 3:2r31, respectively. This differen-
tial frequency tuning of WGMs allows us to achieve
condition (7) required for the frequency doubling.

Changing the resonator temperature has the same effect
as changing the bias voltage, since the temperature depen-
dences of the indices of refraction noðTÞ and neðTÞ are
different. While the electro-optical tuning is faster, the
temperature tuning has a larger dynamic range.
To find the phase-matching temperature for the WGMR,

we made a bulk crystal from the same wafer and deter-
mined its phase-matching temperature to be 121:7 	C. This
result was consistent with the calculations based on the
Sellmeier equation [17] and with an earlier experiment
[18]. Using the Sellmeier equation together with the
spherical WGMR dispersion (4), we calculated the optimal
phase-matching temperature to be 94:1 	C. We assumed
!p ¼ 2�c=1064:3 nm, mp � 25 200, and qs ¼ qp ¼ 1,

as this is the most efficient conversion channel within the
accessible temperature and wavelength ranges.
We find the phase matched modes by frequency tuning

the extraordinary WGMs at 532 nm relative to the ordinary
WGMs at 1064 nm with the bias voltage. We compensate
for the frequency shift of the fundamental WGM by the
laser central frequency. At some bias voltages the require-
ment (7) is occasionally satisfied for a pair of modes. Then
if Eq. (6) is also satisfied, SH is generated, see Fig. 4. For
different pump modes this might happen once or several
times. However, for the majority of the modes it never
happens within the explored parameter space.
We observed different conversion efficiency for different

WGMs. Figure 5 shows the best measured conversion
efficiency as a function of the in-coupled pump power. It
is worth noting that the detected SH power is proportional
to the power circulating in the resonator and to the reso-
nator coupling. The circulating power, on the other hand, is
reduced when the coupling increases (due to decreasing Q
factors). As a result, the detected SH power as a function of
the coupling has a maximum which corresponds to the
over-coupled fundamental WGM.
The theoretical model for the SH generation [19] in an

idealized doubly resonant WGMR has been advanced in
[10]. A key parameter in this model is the saturation power
W0 which can be considered as an absolute measure of the
nonlinear conversion efficiency, independent of the pump
power. The experimental value of W0 reported in [10] is
300 mW. We have measured W0 ¼ 3:2 mW, see Fig. 5.
However, even this low power greatly exceeds the theo-
retical estimate of W0 � 6 �W derived for our resonator
based on the theoretical model in Ref. [10]. This indicates
that the spatial overlap between the SH and fundamental
WGMs in our experiment deviated from the optimal one by

a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0ðtheorÞ=W0ðexptÞ

p � 0:043. To explain this
discrepancy we point out that the diagonal coupling coef-
ficients Ls ¼ 2Lp in Fig. 1 decrease rather slowly with

increasing L-m. Also, according to Fig. 2, coupling be-
tween WGMs with different radial numbers q remains
significant even when the difference is large. Therefore
we observe multiple instances of phase matching with
nonoptimal conversion efficiencies and consequently
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FIG. 3 (color online). Experimental setup.

FIG. 4 (color online). Transmitted pump power and the SH
signal. The coupling is optimized for high SH output, which
corresponds to overcoupled fundamental modes. On the inset: a
typical WGM spectrum of a critically coupled resonator.
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higher saturation powerW0, than for optimal conditions. It
is difficult to uniquely establish which pair of modes
yielded the overlap factor inferred from experiment.

Similar nonoptimal conversion efficiencies were mea-
sured in the range of 94 	C to 122 	C. Evidently, the
calculations based on the spherical WGMR dispersion
(4) have not been sufficiently accurate for our nonspherical
resonator. Considering a very narrow temperature width of
a WGMR phase matching, of the order of 0:001 	C, em-
pirically searching for the optimal phase matching within a
30	 temperature range was cumbersome. A more accurate
initial temperature estimate is preferable.

The conversion efficiencies measured both in [10] and
here (see Fig. 5) reach the maxima and saturate at much
lower in-coupled pump powers than W0. We attribute this
to a nonlinear ‘‘self-limiting’’ effect arising when the
circulating pump power exceeds a certain threshold, see
the inset in Fig. 5. This effect is not related to the photo-
refractive damage (which can also be observed in our
resonator, see [20]). While the photorefractive damage
causes quasipermanent changes to the WGM spectra, the
‘‘self-limiting’’ effect shows purely dynamic behavior as a
function of the pump power and coupling. This effect may
be related to the onset of self-pulsing or similar dynamics
[12] and will be discussed elsewhere.

In summary, we present the first natural noncritical type-
I phase matching for 1064 to 532 nm optical frequency
doubling in a high-QWGMR. This results in a hundredfold
lower saturation pump power. Our theoretical study of
phase matching in the spherical geometry of WGMRs
has predicted the existence of multiple coupled WGM
pairs with varying conversion efficiency consistent with
our observations. The study also predicted the asymmetry
between the SH and PDC selection rules, which may lead

to the competition between these processes and explain the
observed ‘‘self-limiting’’ effect.
The best efficiency of 9% was achieved at 30 �W in-

coupled cw pump power. Such a high-efficiency low-
power frequency conversion process is very interesting in
the context of nonlinear optomechanical coupling [1], non-
linear dynamics [12], and quantum optics [13].
Experiments with linear cavities showed reduction of am-
plitude noise below the quantum limit at the fundamental
[21] and SH [18] frequencies. The theoretical limit for this
reduction has been shown [22] to be determined by the
pump noise. In the low pump power regime, shot noise and
subshot noise pump light fields are easily accessible, see,
e.g., [23]. We plan to exploit the low-power operation
regime in nonlinear WGMRs to lift the pump noise limi-
tation and to realize a source of nonclassical light.
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FIG. 5 (color online). SH conversion efficiency as a function
of the in-coupled power: experimental data and theoretical fit
[10] corresponding to the saturation pump powerW0 ¼ 3:2 mW.
On the inset: transmitted pump power and the second harmonic
signal above the ‘‘self-limiting’’ threshold which arises at a
much lower power than W0.
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